
1 January 1999 Delphi Informant

January 1999, Volume 5, Number 1

Cover Art By: Darryl Dennis

ON THE COVER
7 Delphi 4 Multi-tier Techniques — Bill Todd
The Delphi 4 TProvider component has a new property that allows you to
enforce business rules by blocking inserts, deletes, or posts with an exception,
just as you would in a two-tier application. Thus, multi-tier development has
never been easier, as Mr Todd demonstrates with six example projects.

14 Multi-tier Database Apps: Part I — Thomas J. Theobald
Mr Theobald explains n-tier development from square one, and demonstrates
the concepts with an example application portable between two back-end
data sources. The demonstration application features four tiers responsible for
user interface, business logic, data access, and data storage.

FEATURES
19 Informant Spotlight
MTS Development: Part II — Paul M. Fairhurst
Continuing his three-part series on Microsoft Transaction Server, Mr Fairhurst
steps through a demonstration application that implements a three-tier
database banking system.

26 DBNavigator
Delphi Database Development: Part V — Cary Jensen, Ph.D.
Backing the discussion with time trials as an example project, Dr Jensen
continues his database series by explaining the essential database tasks
of navigation and editing.

31 Algorithms
Tree Management — Rod Stephens
From basic terminology to performance issues, Mr Stephens describes
tree structures algorithms — and supplies Object Pascal implementations
for building them and putting them to use.

37 Delphi Reports
Generic Reports — Keith Wood
Taking QuickReport to a new level of reusability, Mr Wood shares techniques
for creating generalized, polymorphic reports. Ever used an object procedure?

42 At Your Fingertips
A Quick Spin on NT — Robert Vivrette
Delphi Informant ’s Technical Editor, Robert Vivrette, shares a number of
quick programming tips, from manipulating graphics on Windows NT, to
dealing with GetLastError, to better string-to-integer conversion.

REVIEWS
46 TSQLBuilder

Product Review by Ron Loewy

48 CodeSite 1.1
Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Symposium by Jerry Coffey
3 Delphi Tools
5 Newsline
52 File | New by Alan C. Moore, Ph.D.

Symposium
As usual, Alan Moore’s “File | New” column graces the last page of this magazine. And, as usual,
Alan has written a piece of intelligent, engaging commentary. In fact, this one really got me

going. I don’t disagree with anything Alan says (also as usual), but I would like to expand on some of
his points, and offer another perspective. In his column, Alan sings the praises of Delphi 4, but he
also chides Inprise — gently, mind you — about some bugs in the initial version of Delphi 4, and the
decision to perhaps ship it too early.

Simply the Best
Despite the reasonable stance of the
article and Alan’s well-known affection
for Delphi, I fear some of you will zero
in on the word “bug” and come away
with the impression that we’re being
unreasonably critical of Inprise and/or
Delphi. It also gives me an opportunity
to say some things about Delphi, and
it’s place in the software market — and
in software history.

Like many of you, I’ve worked with a
lot of programming languages and
IDEs in my 18-odd years as a software
developer. Delphi is easily the best I’ve
ever worked with. Every other tool —
especially when compared to Delphi —
suffers from various pitfalls, including,
but not limited to: bad or meager doc-
umentation, limited feature set, usabili-
ty lapses, a profusion of bugs large and
small, plain flaky behavior, annoying
tics to work around (or simply endure),
and — last but not least — the wall,
i.e. things you just can’t do.

Alan mentions that some Delphi
developers were unhappy that Delphi
4 shipped without most of the hard
docs that accompanied previous ver-
sions. I’m sorry, but that’s the state of
the industry; it’s just become too
expensive to produce the manuals,
package and ship them, and remain
competitive on price. Another factor is
that online help has become so good
that the demand for hard docs has
2 January 1999 Delphi Informant
dropped precipitously. They’re essen-
tially superfluous; I can see my Delphi
3 docs, still in their shrink-wrap, from
where I sit. The context-sensitive help
is that good. And even if you take the
time to look up something in the
paper manual, you’ll find the same
information as online.

There are also developers out there —
I see them in threaded discussions and
the like — who deride Delphi’s docu-
mentation, hard or online. Frankly, I
find this irritating; anyone who thinks
the Delphi docs are poor has never
done serious work with another tool.
Inprise’s Delphi docs are in a class by
themselves; no other software compa-
ny produces anything close to them in
quality or quantity. The one time
Inprise (then Borland) clearly stum-
bled in this respect was with the ini-
tial release of Delphi 3. Its online
help was essentially broken.
Fortunately, an in-line release took
care of the problem and brought it
back to world-class standards.

Which brings me to maintenance
releases. Far more important than the
fact that Delphi 4 shipped with some
minor bugs, is that Inprise quickly
offered maintenance releases to cor-
rect the problems. As I write this, the
Delphi 4 Update Pack #2 is available
at http://www.inprise.com/
devsupport/delphi/downloads.
(Updated releases of Delphi online
help are also there, as are technical
papers, FAQs, etc.) Too few developers
take advantage of these maintenance
releases; I still hear some complaining
of Delphi 3’s broken help. At this late
date, it’s the developer’s fault if he or
she doesn’t have the in-lines. Although
Inprise has an excellent track record in
this regard, all software has bugs, and
it’s the developer’s responsibility to
keep up with maintenance releases.

In some respects, Delphi is its own
worst enemy; it’s so good that the bar
has been set very high. Its developer
community is holding Delphi to an
exalted standard. And that’s fine; it’s
reasonable to expect excellence when it
comes to Delphi, and the Inprise R&D
team that keeps bringing us spectacular
new versions. It’s also important to real-
ize you’re working with the best soft-
ware development tool in history.

Thanks for reading.

Jerry Coffey, Editor-in-Chief

Internet: jcoffey@informant.com
Snail: 10519 E. Stockton Blvd.,
Suite 100, Elk Grove, CA 95624

http://www.inprise.com/devsupport/delphi/downloads

3 January 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Tamarack Announces Rubicon 2.0

Delphi 4 Bible
Tom Swan

IDG Books Worldwide

IISSBBNN:: 0-7645-3237-5
PPrriiccee:: US$49.99

(953 pages, CD-ROM)
PPhhoonnee:: (800) 762-4974

SAMS Teach Yourself Borland
Delphi 4 in 21 Days

Kent Reisdorph
SAMS Publishing

IISSBBNN:: 0-672-31286-7
PPrriiccee:: US$39.99 (918 pages)

PPhhoonnee:: (800) 428-5331
Tamarack Associates
announced Rubicon 2.0, a
full-text search engine for all
versions of Borland Delphi
and C++Builder. Rubicon
2.0 performs full-text
searches by indexing all the
words in a database or set of
documents. The user is then
able to perform searches by
typing in words or phrases.
Rubicon supports And, Or,
Near, Not, and Like search
logic and wildcards.
Searches may be iteratively
MathTools Announces M

Inner Media Releases Ac
narrowed or widened.
Search results may be used
to filter the search table,
navigate to matching
records, or create a match
or answer table in natural
or rank order.

As a database engine,
Rubicon can index records
stored in table formats sup-
ported by the BDE,
Advantage Database Server,
Apollo, DBISAM, FlashFiler,
InterBase Objects, and Titan
Access.
ATCOM 4

tive Delivery 1.2
Tamarack Associates
Price: US$299 (includes free 2.xx
updates and support)
Phone: (650) 322-2827
Web Site: http://www.tamaracka.com
Inner Media, Inc.
announced Active Delivery
1.2, a developer toolkit for
creating self-extracting zip
files. Active Delivery (AD)
enables Web sites to pack-
age custom data on demand
for delivery over Internet/-
intranet connections.

Version 1.2 offers the abil-
ity to create and modify
Startup menu items; safely
replace system and other
files that are presently in
use; create multi-volume or
“spanning” disk sets; make
use of “helper” applications
to expand the capability of
AD packages; as well as
support for Active Server
Pages and ISAPI DLLs.

Using any of the provided
interfaces, developers can
call into AD and tell it
whether to create a true
16- or 32-bit executable,
what files to add, how the
Package is to appear to the
end user, what external
programs to run, etc.
Developers can then ship
the AD libraries royalty-free
with any number of prod-
ucts. Code samples are pro-
vided for Delphi, C/C++,
Visual Basic, Microsoft
Visual FoxPro, and
Microsoft Access.

Inner Media, Inc.
Price: US$249; Active Delivery Pro
(includes DynaZIP-32), US$384;
current owners of Active Delivery 1.0
may purchase update for US$69.
Phone: (800) 962-2949
Web Site: http://www.active
delivery.com
MathTools Ltd.
announced the release of
MATCOM 4, a compiler
for MATLAB capable of
compiling MATLAB 4.x
and 5.x code into stand-
alone applications, MEX
files, or DLLs for Borland
Delphi, Microsoft Excel,
and Microsoft Visual Basic.
This version of MATCOM
features sparse matrices,
multi-dimensional matrices,
structure type manager,
structure arrays, improved
compatibility with
MATLAB 5, imaging
support, exact report of
error location, and a built-
in accelerator.

MathTools Ltd.
Price: Standard version, US$699
(commercial license) and US$199
(academic license); Professional
version (includes advanced graphics
option and creation of DLLs for Visual
Basic/Excel/Delphi), US$999
(commercial license) and US$299
(academic license).
Phone: (212) 208-4476
Web Site: http://www.mathtools.com

http://www.tamaracka.com
http://www.activedelivery.com
http://www.activedelivery.com
http://www.mathtools.com

4 January 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

MKO Announces MK QueryBuilder

MK Organisation an-

nounced MK QueryBuilder,
a query tool that extracts and
prints data from popular
databases. MK QueryBuilder
is available for Delphi 3, and
comprises three components
written in Delphi (source
code is provided).

Included are three compo-
nents: the MKQB compo-
nent, which gathers
Datamodel Designer and
the QueryBuilder itself;
MKXFER, which allows
data exports to various file
formats; and MKREPORT,
a report designer for the
end user (based on
QuickReports).

MK QueryBuilder allows
developers to graphically
design logical data models
Grebar Systems Releases
exactly as the users will see
them. It also allows develop-
ers to create simple and
complex queries, with calcu-
lated fields, sorts, groups,
and “HAVING” commands.

MK QueryBuilder uses the
Borland Database Engine to
access data, and allows
multiple-database queries
 PrintDAT!
(links between tables located
in different DBMSs, such
as ORACLE and SQL
SERVER).

MK Organisation
Price: Contact MKO for pricing.
Phone: (33 0) 1 43 58 61 61
Web Site: http://www.mko.fr/
html.us/index_us.htm
Grebar Systems Inc. released
PrintDAT!, a VCL report
component that allows devel-
opers to print TDBGrid,
TStringGrid, TTable, TQuery,
and TDecisionGrid objects.
PrintDAT! works like a dialog
box component. Reports are
compiled into a developer’s
program or it can be run from
within the Delphi IDE.

PrintDAT! can print grids
with over 1,000 columns
across, using horizontal page
breaks, and has run-time
options to handle Shrink to
Page and snaking newspaper
panels. It auto-sizes report
columns according to underly-
ing data and adjusts reports to
fit the size and orientation of
the paper. Reports can be sent
to the printer, a text file, the
built-in report viewer, or the
Windows Clipboard, or the
report can be exported to a
spreadsheet using an ASCII-
delimited file format.

Grebar Systems Inc.
Price: US$49; source code is available
for an additional US$99.
Phone: (204) 942-3301
Web Site: http://www.grebarsys.com
Adapta Software Inc.
announced AdaptAccounts
6.4 for Windows 95/98/NT,
a Delphi 4-based version of
the company’s database
accounting applications
family. The new line contin-
ues the 4-User configuration
option, as well as the
Developer and Multi-Copy
License options. The new
version also incorporates
InfoPower and ACE
Reporter for Delphi 4.

Adapta’s modular applica-
tions include System
Manager, General Ledger &
Financial Reporter, Accounts
Receivable, Accounts
Payable, Inventory, Sales,
Purchasing, Job Costing, Bill
of Materials, and Payroll.

Adapta Software Inc.
Price: General Accounting pack,
US$1,695 for one-user system;
Accounting/Distribution pack, from
US$2,995 for one-user system.
Phone: (250) 658-8484
Web Site: http://www.
adapta.com

Adapta Ships
AdaptAccounts 6.4
SkyLine Ships ImageLib
Corporate Suite 4.0
SkyLine Tools announced

ImageLib Corporate Suite 4.0,
which enables developers using

Delphi 3 and 4, Borland
C++Builder 3.0, and Microsoft

Visual C++ to incorporate
image and multimedia develop-

ment into their applications.
This version offers six additional

SnapOn Toolbars, updated
Open and Save functions, and

improved DLL support.
Corporate Suite 4.0 also

includes BLOB updates for six file
formats, scrollbar width flexibility,
thumbnail preview refinements,

improved Help files, and interna-
tionalization support. Also

included are Scale-to-Gray with
seven options, a thumbnail man-

ager, Pixel free, and Deskew.
The Suite includes ImageLib

WebKit, which features support
for Progressive Display GIF,

PNG, JPEG, Interlaced,
Transparent, and Animated GIFs.

For more information, call
(818) 346-4200, or visit the

ImageLib Web site at
http://www.imagelib.com.

http://www.imagelib.com
http://www.mko.com/index.htm
http://www.mko.com/index.htm
http://www.grebarsys.com
http://www.adapta.com
http://www.adapta.com

5 January 1999 Delphi Informant

News
L I N E

January 1999

Inprise Announces New Versions of JBuilder/400
and Delphi/400
Anaheim, CA — Inprise
Corp. announced new ver-
sions of JBuilder/400 and
Delphi/400, the company’s
Java- and Windows-based
development tools for the
IBM AS/400 series of business
computer.

Inprise offers a family of
interoperable AS/400 develop-
ment tools for enterprises inte-
grating IBM AS/400 systems
with the emerging platforms
made available by Microsoft
Apogee Builds Award-w
Application for Beloit

Genesis Unlimited Acqui
Windows and Sun Micro-
systems’ Java.

Inprise’s JBuilder/400 and
Delphi/400 allow enterprises
to protect and leverage their
investments in AS/400
architecture, while they
develop and deploy GUI
Windows and Web-based
applications.

For pricing or other addi-
tional information, call (831)
431-1064, or visit http://www.
inprise.com/inprise400.
inning Software

res Web Solution Builder
AverStar Licenses
JWatch Technology to
Inprise

Burlington, MA — AverStar
Inc. announced that Inprise
Corp. will use AverStar’s
JWatch debugging technolo-
gy for the Java platform in
future versions of JBuilder,
Inprise’s rapid application
development tool for Java.

AverStar created JWatch for
the enterprise developer who
needs to debug multiple con-
current processes distributed
across the network. JWatch
handles multiple processes,
multiple platforms, distrib-
uted applications, sourceless
applets, Remote Method
Invocation, and servlet
debugging.

For more information on
AverStar or JWatch, visit the
AverStar Web site at
http://www.averstar.com.
Marlboro, MA — Beloit
Corp. received the top
ranking for their Bids and
Proposals System in
InfoWorld ’s annual
“InfoWorld 100” list of the
most successful client/server
application development
projects in the world. The
system was designed and
developed by Apogee
Information Systems using
Delphi Client/Server.

Beloit is a manufacturer of
paper pulp processing
machines. The new Bids
and Proposals System auto-
mates the engineering, ref-
erence selection, cost and
price estimation, and text
generation process for a
new proposal. Proposal
teams using the system can
span all five of Beloit’s divi-
sions, including more than
20 office locations across
the United States, South
America, Europe, and Asia.

In August, 1998, Apogee
won the 1998 Inprise
Application of the Year
award for its work with
ITT Sheraton Corporation.
The winning Sheraton
application was also devel-
oped using Delphi.
San Francisco, CA —
Inprise Corp. announced
support for Oracle8i
(Oracle Corp.’s database for
Internet computing) in its
Delphi and C++Builder
tools. With the Oracle8i
support, Delphi and
C++Builder customers will
experience higher produc-
tivity in building, deploy-
ing, and managing Internet
applications.

Oracle8i is designed to be
an Internet development
and deployment platform.
It enhances Oracle8’s tech-
nology with features that
make it easier to create
robust and scalable Internet
and enterprise intranet
applications.

For more information on
Oracle8i, visit the Oracle
Corp. Web site at
http://www.oracle.com.

Inprise Announces
Support for Oracle8i in
Enterprise Tools
Knoxville, TN — Genesis
Unlimited, Inc. announced
it has purchased (for an
undisclosed amount) all
rights to the Web Solution
Builder from Shoreline
Software. The product
allows developers to leverage
Delphi to create professional
and secure Web-based appli-
cations. Genesis Unlimited
will enhance and utilize the
product for its customer
application base.

The agreement is fully
endorsed by both compa-
nies, and Shoreline
Software will continue to
use Web Solution Builder
for Web-based application
development. Genesis
Unlimited will now handle
support for Web Solution
Builder.

For details, visit Genesis
Unlimited’s Web site
(http://www.Genesis
Unlimited.com), or Phoenix
Business Enterprises
(http://www.pbe.com), a
wholly-owned subsidiary of
Genesis Unlimited that will
be handling the Web
Solution Builder product.

http://www.inprise.com/
http://www.inprise.com/
http://www.averstar.com
http://www.GenesisUnlimited.com
http://www.GenesisUnlimited.com
http://www.pbe.com
http://www.oracle.com

The cover article of the October, 1998 Delphi Informant,
“Crystal Reports: Interfacing with the Leading Report

Writer,” contained some outdated information. Delphi Informant
apologizes and offers these updates. We’d like to thank Frank
Zimmerman of Seagate technical support for this information.

Contact info. The Seagate Software Web site is at http://www.
seagatesoftware.com. Tech support is available by phone
(604.669.8379), e-mail (support@webacd.seagatesoftware.com),
the Web (http://webacd.seagatesoftware.com), and fax
(604.681.7163). The latest updates to the VCL can be obtained
at http://www.seagatesoftware.com/crystalreports/updates.

Tables object. The OnLoadDataFiles event was redundant with the
release of the Crystal 5 VCL, which had a RetrieveDataFiles method.
With the new 32-bit VCL, this is handled differently again. Crystal
no longer uses a StringList to represent DataFiles. Each major classifi-
cation in the report’s structure is represented by a subclass in the
VCL. Hence, a Tables object is a subclass of TCrpe. So instead of
using the OnLoadDataFiles event to fill the DataFiles StringList, or
instead of using the RetrieveDataFiles method, a statement such as
this is used:

Crpe1.Tables.Retrieve;

From there, the individual table names and paths can be accessed either
by subscript:

Crpe1.Tables[0].Name := 'NewTable.DBF';

or in a loop using the Count method:

for cnt := 0 to Crpe1.Tables.Count - 1 do
Crpe1.Tables[cnt].Path := 'C:\Newdir\';

Export formats. Export formats for WordPerfect, Word for DOS, and
Quattro Pro are still available, but only in 16-bit. There are no 32-bit
DLLs to allow exporting to these formats from a 32-bit application.

Report format. The report format is not “bit dependant.” A report cre-
ated in 16-bit Crystal will load without a problem into 32-bit Crystal,
and vice versa. U2FCR.DLL is a 32-bit DLL as well. For 16-bit, it is
UXFCR.DLL. U2FDOC.DLL and U2FQP.DLL do not exist. As pre-
viously mentioned, these export formats are only available in 16-bit,
the DLL names being UXFDOC.DLL and UXFQP.DLL.

New 32-bit VCLs for Delphi 2, 3, and 4. As mentioned, the new
VCLs implement extensive use of subclass objects for each report
option. Hence, there is a Tables object that contains all the properties
and methods that relate to handling database tables in a report. There is
also a SQL object that contains all the properties and methods that
relate to SQL query and stored procedure parameters, a Formulas
object, and so forth. In all, there are 39 new subclass objects. These
VCLs are available for free download at ftp://ftp.img.seagate
software.com/pub/crystal/delphi. The latest update to the 16-bit VCL
(which does not contain the subclass features of the new 32-bit VCLs)
is also available on the same FTP site.

Crystal Reports Update
6 January 1999 Delphi Informant
Design time. The new VCL has Active design-time features. Shown
here is a report that has been run from the Object Inspector onto a
Delphi panel without writing a single line of code. If the Object
Inspector is expanded to show all the properties it would take five sheets
of 8 1/2 x 11 paper to print!

Feature summary. The new 32-bit VCL features:
Delphi 2, 3, and 4 versions
39 new subclass objects for better organization
61 base class properties, 301 subclass properties
29 base class methods, 235 subclass methods
Seven new events, including an OnError event for full control over
error handling and messages
22 new Windows callback events for interacting with Preview
Window events
Full support for all Print Engine features, except the call to send a
report an ADO data source
Full subreport support, including launching of subreports as
separate reports
Full retrieve capability: retrieve all report values directly to the VCL
Active design-time editing: retrieve report data, edit it, and launch
reports without code
Full support for all the new Crystal 6.0 features: Windows callback
events, group options, report summary info, preview window
buttons, window cursor shapes
Visible print job number property
BDE alias support: aliases can be used directly to change table
path, or the path can be extracted from an alias for other purposes
(such as setting the report directory)
Crystal Reports parameter fields and stored procedure parameters
can be passed as native Delphi types rather than as strings
Full support for Area Format and Section Format formulas
Crystal Reports Print Engine can be loaded and unloaded on-the-
fly at run time
SQL connection can be easily propagated to subreports
Table location can be easily propagated to subreports
Section naming convention now matches Crystal Reports short
section name format
Printer can be changed simply by specifying a new printer name
New, extensive, context-sensitive Help with Delphi code examples
for every property and method, plus introductory tutorial sections
Full-featured sample application for demonstration and testing
purposes, with links to the Help file

http://www.seagatesoftware.com
http://www.seagatesoftware.com
http://webacd.seagatesoftware.com
http://www.seagatesoftware.com/crystalreports/updates
ftp://ftp.img.seagatesoftware.com/pub/crystal/delphi
ftp://ftp.img.seagatesoftware.com/pub/crystal/delphi

7 January 1999 Delphi Informant

On the Cover
Delphi 4 / Multi-tier Database Development / Transaction Processing

By Bill Todd
Delphi 4 Multi-tier Techniques
Row-level Business Rules, Real Transaction Processing,

and More

One problem many developers encountered while building multi-tier
applications with Delphi 3 was implementing business rules in the

middle-tier application server. You could create an OnUpdateData event han-
dler for the TProvider component and validate all the records in the update
(delta) packet sent to the application server by a call to ApplyUpdates in the
client. However, using OnUpdateData required you to accept or reject all the
records as a set. The only alternative was to use the TUpdateSQLProvider
component, which Inprise made available with the Delphi 3.02 release.
TUpdateSQLProvider wasn’t an official part of the VCL, but it added an
OnUpdateRecord event to the events provided by TProvider, giving you
record-by-record control of the update process.
Delphi 4 has solved this problem in a very dif-
ferent way. In Delphi 4, the TProvider compo-
nent has a new property — ResolveToDataSet.
ResolveToDataSet is False by default, which
provides the same behavior as Delphi 3. When
ResolveToDataSet is True, updates are applied
using the dataset component the provider is
connected to. This causes all the dataset’s
events to fire as though the changes were
being made manually or in code. Now you
can enforce business rules by blocking inserts,
deletes, or posts with an exception, just as you
would in a two-tier application.

The sample EbSrvr application that accom-
panies this article demonstrates this using
the BeforePost event handler from the
OrderTable object:

procedure TEbServer.OrderTableBeforePost

(DataSet: TDataSet);

begin
with DataSet do

if FieldByName('ShipDate').AsDateTime <

FieldByName('SaleDate').AsDateTime

then
raise Exception.Create(

'Ship date must be greater than

sale date.');

end;
This code raises an exception if the
ShipDate is less than the SaleDate. In
Delphi 3, raising an exception in the
provider’s OnUpdateData event handler
caused an exception in the client application
at the call to ApplyUpdates. However, raising
an exception in one of the Before event han-
dlers when ResolveToDataSet is True doesn’t
cause an exception in the client. Instead, the
client’s ReconcileError event is fired just as
with any error generated by the VCL code
in the server, or by the database server itself.
This is a vast improvement because all
errors, regardless of source, can be handled
in the same way in the client.

The sample application uses the Reconcile
Error dialog box from the Object
Repository to handle all errors. If you try
to post an order record whose ShipDate is
less than the SaleDate, the error will appear
in the Reconcile Error dialog box with the
message text that you passed to the excep-
tion’s constructor in the application server.
The disadvantage of setting
ResolveToDataSet to True is somewhat slow-
er performance. (Note: EbSrvr and the

procedure TMainForm.JobCodeComboChange(Sender: TObject);

begin
with MainDm.EmployeeCds do begin

{ If the parameters have not been fetched from the
server, fetch them. }

if Params.Count = 0 then FetchParams;

{ Set the parameter values. }
Params.ParamByName('Job_Code').AsString :=

JobCodeCombo.Text;

Params.ParamByName('Job_Grade').AsInteger :=

StrToInt(JobGradeEdit.Text);

{ If the Employee client dataset isn't active, open it.
Opening the dataset sends the parameters to the
server. If it's already open, call SendParams to send
the new parameter values to the server and refresh
the dataset. }

if not Active then
Open

else begin
SendParams;

Refresh;

end; // if
end; // with

if not MainDm.SalaryCds.Active then
MainDm.SalaryCds.Open;

end;

Figure 1: Setting parameters in the application server’s query.

On the Cover

Figure 2: The Type Library Editor with the server’s interface
selected.
other example projects discussed in this article are available
for download; see end of article for details.)

Delphi 4 includes a new component — TDataSetProvider —
that performs the same function as TProvider. However, it
always applies updates to a dataset component in the middle-
tier application. TDataSetProvider doesn’t have the ability to
apply updates directly to a database server by passing the
dataset component. TDataSetProvider doesn’t use the BDE, so
it’s the ideal choice if you’re building a multi-tier application
using a non-BDE database.

Controlling the Application Server
There are two ways for the client to control the application
server in a multi-tier application: the first is by passing para-
meters to a query or stored procedure; the second is by exe-
cuting custom methods on the server. Passing parameters to a
TQuery, TStoredProc, or TTable in the application server was
implemented in Delphi 3 using the Provider property of
TClientDataSet to call the Provider’s SetParams method pass-
ing as a parameter a variant array containing the parameters.

Delphi 4 provides a new way to do the same thing, as shown
by the code in the QClnt sample application (see Figure 1).
This code is from the JobCodeCombo combo box’s OnChange
event handler. TClientDataSet now includes a Params property.
You can fetch the parameters from the TQuery or TStoredProc
component on the server at design time or run time. At design
time, right-click the TClientDataSet and choose Fetch Params.
At run time, call the FetchParams method.

The preceding code first checks the property
TClientDataSet.Params.Count to see if any parameters have
been fetched. If not, FetchParams is called. Once the para-
meter names and types have been fetched from the server,
8 January 1999 Delphi Informant
you can assign values to each parameter using the
Params.ParamByName method.

You can send the parameters to the application server in
one of two ways. If the TClientDataSet is closed, simply
open it. Opening the ClientDataSet automatically sends the
current parameter values to the application server. If the
ClientDataSet is already open, call its SendParams method
to send the new parameters to the application server. The
server will automatically close the query or stored proce-
dure, assign the new parameter values, then reopen the
query. After calling SendParams, be sure to call the
ClientDataSet’s Refresh method so it will retrieve the new
records from the application server.

Calling custom methods on the application server is no dif-
ferent than calling a custom method in any other automa-
tion server. The first step in implementing a custom method
in the server that can be called from the client is to add the
custom method to the server’s interface using the Type
Library Editor. Open the Type Library Editor by selecting
Type Library from the View menu, then click on the interface
to select it, as shown in Figure 2.

Click the New Method button to add as many methods as you
need, and to add any parameters and a return value if required.
Finally, click the Refresh Implementation button to update the
type library interface unit, and add the new methods’ stubs to
the remote data module’s unit. In the previous example, two new
methods, FilterOn and FilterOff, were added to the interface.
These methods can now be called from the client, using the con-
nection component’s AppServer property.

Early Binding
By default, the MIDAS connection components use late
binding when calling methods of the application server.
Although late binding works regardless of the type of con-
nection between the client and the application server, it’s
slower than early binding. Also, early binding provides
compile-time error checking of all your interface method
calls. Early binding is only available if you use DCOM for
the connection.

procedure TEcMainForm.ByName1Click(Sender: TObject);

var
IServer: IEbServer;

begin
with MainDm do begin

IServer := IDispatch(EbConn.AppServer) as IEbServer;

IServer.FilterOn;

CustomerCds.Refresh;

end;
end;

Figure 3: Calling a server method with early binding.

On the Cover

procedure TEcMainForm.ByCustomerNumber1Click(

Sender: TObject);

var
IDispServer: IEbServerDisp;

begin
with MainDm do begin

IDispServer :=

IDispatch(EbConn.AppServer) as IEbServerDisp;

IDispServer.FilterOff;

CustomerCds.Refresh;

end;
end;

Figure 4: Calling server methods using the dispatch interface.

Figure 5: Adding the IEbClient interface to the server.

type
TEbServer = class(TRemoteDataModule, IEbServer)

Database1: TDatabase;

CustomerTable: TTable;

CustomerProv: TProvider;

OrderTable: TTable;

OrderProv: TProvider;

procedure EbServerCreate(Sender: TObject);

procedure EbServerDestroy(Sender: TObject);

procedure OrderTableBeforePost(DataSet: TDataSet);

procedure CustomerProvGetDataSetProperties(

Sender: TObject; DataSet: TDataSet;

out Properties: OleVariant);

private
ClientConnection: IEbClient;

protected
function Get_CustomerProv: IProvider; safecall;
function Get_OrderProv: IProvider; safecall;
procedure FilterOn; safecall;
procedure FilterOff; safecall;
procedure ConnectClient(const Client: IEbClient);

safecall;
function IsDatabase: WordBool; safecall;

end;

Figure 6: The server’s remote data module with the
ClientConnection added.
To use early binding, you must obtain an interface refer-
ence, which is simply a pointer to the interface’s vtable (vir-
tual method table), for the application server’s interface.
This is a two-step process. First, cast the connection com-
ponent AppServer property to IUnknown or IDispatch to get
an interface reference. This converts the AppServer property
from a variant of variant type varDispatch to an interface
reference. Next, cast the IUnknown or IDispatch interface to
the interface type of the application server. This causes
COM to call QueryInterface and return a reference to the
application server’s vtable. In the code in Figure 3, both
casts are performed in a single statement. This code calls the
custom FilterOn method that was added to the application
server’s interface using the Type Library Editor.

IEbServer is the application server’s interface and IServer is an
interface reference variable. EbConn is the TDCOMConnection
component. To initialize the interface reference variable IServer
to point to the interface’s virtual method table, the AppServer
property is first cast to IDispatch, then to IEbServer. Once the
interface variable has been initialized, it can be used to call the
methods of the interface using early binding.

Although you cannot use early binding if you aren’t using
DCOM for the connection, you can improve performance
compared to late binding by using the application server’s
dispatch interface. The code in Figure 4 is nearly identical to
the previous example, except that the connection compo-
nent’s AppServer property is cast to the dispatch interface
type, IEbServerDisp.

Controlling the Client
The application server in a multi-tier application can call
methods in the client application. This allows events that
occur in the server to call event handlers in the client. The
first step in allowing the server to call methods in the
client is to add another interface to the server’s type
library, as shown in Figure 5.

This figure shows the type library for the sample EbSrvr applica-
tion after adding a second interface, IEbClient. After adding the
second interface, select it and add all the client methods that the
server will call. In this case, a single method named
ConfirmFilter was added to IEbClient. The client application will
include an object that implements this interface.
9 January 1999 Delphi Informant
Next, add a method to the server’s interface, which takes a ref-
erence to the client interface as its only parameter. In Figure 5,
this method is called ConnectClient. ConnectClient assigns its
interface reference parameter to a variable that is added to the
server’s remote data module. The code in Figure 6 is the type

On the Cover

procedure TEbServer.FilterOn;

begin
CustomerTable.Filtered := True;

if CustomerTable.Filtered then
ClientConnection.ConfirmFilter('Filter Is On')

else
ClientConnection.ConfirmFilter('Filter Is Off');

end;

procedure TEbServer.FilterOff;

begin
CustomerTable.Filtered := False;

if CustomerTable.Filtered then
ClientConnection.ConfirmFilter('Filter Is On')

else
ClientConnection.ConfirmFilter('Filter Is Off');

end;

Figure 7: Callbacks to the client to confirm the filter state.

...

var
ServerTypeLib: ITypeLib;

TypeLibResult: HResult;

CallBack: IEbClient;

...

// Set up the callback interface.
TypeLibResult := LoadRegTypeLib(LIBID_EbSrvr, 1, 0, 0,

ServerTypeLib);

if TypeLibResult <> S_OK then begin
MessageDlg('Error loading type library.',

mtError, [mbOK], 0);

Exit;

end; // if
// Create an instance of the TCallback object.
CallBack := TCallback.Create(ServerTypeLib, IEbClient);

// Get an interface reference to the server.
Srvr := IDispatch(MainDm.EbConn.AppServer) as IEbServer;

// Pass the interface handle of the TCallback object to
// the server.
Srvr.ConnectClient(CallBack);

...

Figure 8: Creating the Callback object in the OnCreate event
handler of the client application’s main form.
declaration for the server’s remote data module after the private
member variable ClientConnection has been added.

ClientConnection is the server’s reference to the object that
implements the IEbClient interface in the client. With this
interface reference, the server can call any method of the inter-
face. In this application, the code in Figure 7 is added to the
server’s FilterOn and FilterOff methods to confirm to the client
that the filter on the Customer table is either on or off.

This code shows the use of the ClientConnection interface ref-
erence variable to call the ConfirmFilter method in the client
application. On the client side, an object that implements the
IEbClient interface must be added to the client application, as
shown in the following:

TCallBack = class(TAutoIntfObject, IEbClient)
procedure ConfirmFilter(const Msg: WideString); safecall;

end;

The TCallback object descends from TAutoInftObject, which
provides support for the IDispatch interface. The implemen-
tation code for the ConfirmFilter method simply assigns the
Msg parameter to the Caption property of a label on the
client’s main form so the user can see the message.

The heart of the callback mechanism is in the OnCreate event
handler for the client application’s main form (see Figure 8).
The variable declarations are global to the main form’s unit.
This code begins by calling the Windows API function
LoadRegTypeLib to load the server’s type library. The parame-
ters are:

The type library’s GUID.
The type library’s major version number.
The type library’s minor version number.
The national language code of the library.
An interface reference variable of type ITypeLib that is ini-
tialized by the call to point to the type library.

LoadRegTypeLib returns a result code indicating whether the
type library was successfully loaded or not. If the library is
10 January 1999 Delphi Informant
successfully loaded, an instance of the TCallback automation
object is created. The type library and interface that the
TCallback object implements are passed as parameters to its
constructor, and the returned value is assigned to the interface
reference variable Callback. Next, a reference to the server’s
interface, IEbServer, is obtained by casting the connection
component’s AppServer property to the interface type. The
final step is the statement:

Srvr.ConnectClient(CallBack);

which calls the server’s ConnectClient method passing the
interface reference variable for the TCallback object as a para-
meter. As you have seen, the server can now use this interface
reference to call any method of the TCallback object that is a
member of the IEbClient interface.

Controlling What the Client Sees
While letting the server call methods in the client is a very
powerful way to implement a two-way exchange of informa-
tion, there are other ways to control what the client sees.
There are three ways to limit which fields the client applica-
tion sees. The first is to use a query as the dataset in the
application server, and only select the fields the client applica-
tion should see.

The second method is to create persistent field objects using
the Fields Editor, in the server application, and only create
field objects for those fields the client application should see.
Note that if you create calculated or lookup fields in the
Fields Editor, they will be sent to the client as read-only
fields. There is a potential problem with limiting fields using
the Fields Editor because you must include the entire primary
key if the client will edit, delete, or insert records so that the
record will be uniquely identified. If you need to include the
primary key so the record can be edited, but do not want the

On the Cover
client application to have access to one or more of the prima-
ry key fields, you can select the field object in the Fields
Editor and use the Object Inspector to change the field
object’s ProviderFlags property to include the pfHidden flag.
The effect is similar to rendering a field invisible in a grid by
setting its Visible property to False. The field is there, but it
cannot be accessed.

You can also add information to the data packets the server
provides to the client. This can be any type of information,
and you can specify that it also be included in the delta pack-
ets returned to the server when the client applies updates.
This means the server can send a round-trip message to itself.
The sample EbClnt and EbSrvr applications use this tech-
nique to send the current Filter property for the Customer
table to the client for display.

To place additional information to the data packets sent by
the provider component, begin by creating an event handler
for the provider’s OnGetDataSetProperties event. The event
handler gets three parameters: the first is Sender, the second
is DataSet, and the third is Properties. DataSet is a pointer to
the dataset that supplies the provider’s data. Properties is an
OleVariant in which you place all the additional informa-
tion you want included in the data packet. Properties must
be a variant array, and must include three elements for each
attribute you add to the data packet. The first element of
the array is a string that contains the attribute’s name. The
second is a variant that contains its value, and the third is a
Boolean value, which is True if you want the attribute
returned in the delta packets.

To add more than one attribute to the data packet, make
Properties a variant array of variant arrays, as shown in the
code from the EbSrvr sample program in Figure 9. This code
adds two attributes to the data packet. The first contains the
value of the dataset’s Filter property, and the second the value
of the dataset’s Filtered property. Note that the Filter attribute
is returned to the server in the delta packets. On the client
side, use the TClientDataSet’s GetOptionalParam method to
retrieve the value of any attribute from the data packet. The
following code is from the U.S. Only menu item’s OnClick
event handler:

FilterStringLabel.Caption :=

CustomerCds.GetOptionalParam('Filter');
11 January 1999 Delphi Informant

procedure TEbServer.CustomerProvGetDataSetProperties(

Sender: TObject; DataSet: TDataSet;

out Properties: OleVariant);

begin
Properties := VarArrayCreate([0,1], varVariant);

Properties[0] :=

VarArrayOf(['Filter', DataSet.Filter, True]);

Properties[1] :=

VarArrayOf(['Filtered', DataSet.Filtered, False]);

end;

Figure 9: Adding information to the data packet.
This code retrieves the value of the Filter attribute as a vari-
ant, and assigns it to the FilterStringLabel ’s Caption property.

Real Transaction Control for Local Tables
Although Inprise claims there is transaction support for local
Paradox and dBASE tables, it’s not true. Transaction support
requires the database always be left in a consistent state, i.e.
either all or none of the changes that are part of a transaction
will occur. For this to happen, the database must roll back all
active transactions upon restart after a crash. Transactions for
local tables are not rolled back after a crash; instead, any
changes that were posted will still exist in the database even
though the transaction was never committed.

There is a second major problem with local table transac-
tions. The only transaction isolation level supported is
tiDirtyRead, which can lead to serious problems. Suppose a
physician is entering treatment information for a patient and
accidentally enters drug therapy information for the wrong
patient. If the record is posted, the change will now be visible
to all other users even though the transaction is not commit-
ted. What happens if another user prints a list of drugs that
must be administered at this point? Even though the physi-
cian reviews his/her entries and rolls back the transaction, the
patient will still receive the wrong medication.

A much better solution when working with local tables is to use
TClientDataSet for all data entry. This is easy to do in Delphi 4:
Simply drop a TProvider and a TClientDataSet on a form or data
module that already has a TTable connected to the table you
want to edit. Set the DataSet property of the TProvider to the
table, then set the Provider property of the TClientDataSet to the
TProvider. This simple approach assumes that TClientDataSet
can hold all the table’s data in memory. If that’s not the case, you
will have to use ranges, filters, or queries to restrict the set of
records the user works with at one time.

Why is TClientDataSet a better solution than local table
transactions? First, consider what happens if one user changes
a record and posts the change, then another user looks at the
same record. The second user will see the unchanged version
of the record until the first user calls the TClientDataSet’s
ApplyUpdates method to “commit” his or her transaction.
This means that you effectively have read committed transac-
tion isolation instead of dirty read transaction isolation.

Now consider what happens if a user makes several
changes and his or her system crashes. Because both the
data and changes made using a TClientDataSet are held in
memory until ApplyUpdates is called, they will all be lost.
This effectively gives you automatic rollback on restart
after a crash. The only time you are vulnerable is during
the brief interval between the moment you call
ApplyUpdates and when the changes have actually been
written to disk. If the workstation crashes while the writes
are taking place, the database may be either inconsistent or
corrupt; however, because the time that the database is in
an inconsistent state is very short, the chances are small.

On the Cover

procedure TMainForm.SaveChanges1Click(Sender: TObject);

begin
{ If there are unposted records post them. }
if MainDm.PersonCds.State in [dsEdit, dsInsert] then

MainDm.PersonCds.Post;

if MainDm.NumberCds.State in [dsEdit, dsInsert] then
MainDm.NumberCds.Post;

{ Merge the changes in Delta with the data and save it. }

with MainDm.PersonCds do begin
MergeChangeLog;

SaveToFile('phone.ffd');

end;
end;

Figure 10: Saving the master and detail tables in a single file.
By comparison, when you use local table transactions, the
database is in an inconsistent state from the time the user
posts the first change of the transaction until the user
commits the transaction. This could be several minutes for
a transaction that involves manually changing several
records. The LclTran demonstration application shows an
example of using TClientDataSet with local tables.

Using TClientDataSet for Flat-file Applications
TClientDataSet is a great tool for building single-user database
applications that deal with modest amounts of data. It pro-
vides all the features of a relational database — except query
support — with nothing to install or configure on the user’s
machine. All you have to do is distribute the dbclient.dll file
with your program. The big limitation of TClientDataSet is
that it holds all the data in memory. However, that is not as
bad as it sounds when you consider that 100,000 records, 100
bytes in length, require 10MB of memory.

Using TClientDataSet for single-user, flat-file applications is
much easier in Delphi 4. One of the most onerous aspects of
writing a flat-file application in Delphi 3 is that the only
way to create your data tables is in code. In Delphi 4, you
can drop a TClientDataSet on a form or data module, and
define your tables interactively using the Fields Editor.
Simply double-click the TClientDataSet to open the Fields
Editor and add new data fields. When you’re done, right-
click the TClientDataSet and choose Create DataSet from the
context menu.

Another new feature useful in flat-file applications is the abil-
ity to use nested datasets. When you create a master
TClientDataSet, you can add fields in the Fields Editor whose
type is DataSet. To use the nested dataset, add another
TClientDataSet to your project and set its DataSetField prop-
erty to the field of type DataSet that you added to the master
TClientDataSet. Now, open the Fields Editor for the detail
TClientDataSet and add the fields for the detail dataset. Note
that you don’t have to add a foreign key field to link the
detail to the master, because the detail is actually contained
by the master.

One problem you may encounter is trying to add another
field to a table after you have created the dataset. You can
add the field in the Fields Editor, but you’ll get an error
when you right-click the ClientDataSet and choose Create

Dataset. To overcome this, select the TClientDataSet and
open the FieldDefs property in the Object Inspector by
clicking its ellipsis button. In the Collection Editor, select
all the field definitions and delete them. Now, right-click
the TClientDataSet and choose Create DataSet to recreate
all the field definitions, including the new field.

The sample Phone application demonstrates this technique.
This is a simple, two-table application. The master con-
tains people, and the detail contains phone numbers. One
of the advantages of using nested datasets is that both the
master and detail are saved in a single file, phone.ffd. The
12 January 1999 Delphi Informant
code from the Save Changes menu item’s OnClick event
handler first posts any unposted changes in both datasets,
then merges the changes and saves the PersonCds to the
phone.ffd file (see Figure 10). Note that only the Person
dataset is saved, because it contains the numbers dataset.

There is, however, a big disadvantage to using nested datasets.
You cannot search the entire detail dataset for a record. This
would be a serious problem in a Customer/Orders relationship,
where searching the entire Orders dataset by order number to
find a specific order would be useful. Even in the sample Phone
application, it might be nice to search for a person by phone
number when you are trying to reconcile your long-distance
phone charges.

Maintained Aggregates
Maintained aggregates are another new feature of
TClientDataSet in Delphi 4. They allow you to maintain the
sum, count, min, max, or average of any number of fields in
a TClientDataSet. What’s even more valuable is that they sup-
port groups and expressions. You can use any index to group
the aggregates. In the case of a composite index, you can also
specify the number of fields to group on.

There are two ways to create and use maintained aggre-
gates. The first is through the Aggregates property of
TClientDataSet. Before creating any aggregates, be sure to
set the AggregatesActive property of the TClientDataSet to
True. You can set this property at any time — but don’t
forget it, or your aggregates won’t work. Next, click the
ellipsis button in the Aggregates property to open the
Collection Editor. Then, press I to add an aggregate.
Finally, set the aggregate’s properties in the Object
Inspector. Again, set the aggregate’s Active property to True
so you don’t forget. Give the aggregate object a meaningful
name, then enter an expression for the Expression property.
The expression can use the Sum, Min, Max, Avg, or Count
operators on a single field, or on an expression involving
two or more fields. For example:

Sum(TaxRate * SaleAmount)

is a valid expression, as is:

Sum(Price) - Sum(Cost).

procedure TMainForm.FormCreate(Sender: TObject);

begin
TotalLabel.Caption :=

IntToStr(MainDm.PersonCds.Aggregates.Find(

'TotalRecords').Value) + ' saved records';

end;

Figure 11: Using the Aggregates.Find method.

On the Cover
To group using an index, set the IndexName property to the
index to use, and set the GroupingLevel property to the num-
ber of the last field in the index to group on. For example, if
you have an index on the Country, Region, and
SalesTerritory fields, set the GroupingLevel to 2 to group by
Region. Setting the GroupingLevel to 0 disables grouping, so
the aggregate will use all the records in the dataset. The sam-
ple Phone application uses an aggregate named TotalRecords
to display the total number of records that have been saved.

To use the aggregate value, use the Aggregates property’s Find
method to get the value, as shown in Figure 11. The expression:

PersonCds.Aggregates.Find('TotalRecords').Value;

finds the named aggregate and calls its Value method to
retrieve the current value of the aggregate.

Another alternative is to create an aggregate field using the
Fields Editor. Add a new field to the TClientDataSet and
choose Aggregate for the field type. Also, click the Aggregate

radio button, then click OK to add the field. Select the field
in the Fields Editor, then set the Name, Active, Expression,
IndexName, and GroupingLevel properties. You can now
access the aggregate like any other field in the dataset. This
technique is particularly useful because it allows you to dis-
play the value of the aggregate using data-aware controls
without writing code.

Conclusion
Delphi 4 brings a host of new features for multi-tier appli-
cation developers, but even more important are the new
features of TClientDataSet that are available to all develop-
ers. Whether you’re developing an enterprise multi-tier
application, a traditional two-tier client/server system, or a
file-server-based program, TClientDataSet offers you main-
tained aggregates, the briefcase model, better caching than
cached updates, better local table transactions than the
built-in local table transactions, nested-table, flat-file
applications without the BDE, and more.

This is a whole new way to develop any application. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901BT.
13 January 1999 Delphi Informant
Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books, author of over 60
articles, and a member of Team Borland, providing technical support on the
Inprise Internet newsgroups. He is a frequent speaker at Inprise Developer
Conferences in the US and Europe. Bill is also a nationally known trainer and has
taught Paradox and Delphi programming classes across the country and overseas.
He was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi
World Tours. He can be reached at bill@dbginc.com or (602) 802-0178.

14 January 1999 Delphi Informant

On the Cover
Delphi 3 Client/Server / Multi-tier Database Planning and Design

By Thomas J. Theobald
Multi-tier Database Applications
Part I: Planning for Database Independence

The use of n-tier technology can reduce the effort of porting applications
between databases. Many vertical market firms can expand their customer

base by presenting a database-independent product and, with good planning
and design, reduce the cost of market penetration dramatically. Traditionally,
you were required to recode complete two-tier applications that targeted differ-
ent database vendors, increasing costs of maintenance, upgrade, and docu-
mentation, so a significant potential customer base was required to justify the
extra expense incurred. By putting extra effort into the planning stages and per-
forming development of the application in anticipation of multiple back-ends,
this extra expense can be reduced significantly.
Models of client/server architecture original-
ly were largely aimed at the two-tier model
of client and server, where the two shared
the responsibilities of user interface (UI),
data management, and business-related
logic. When the three-tier model became
popular (seemingly by default), it adopted a
UI-Business-Data separation of duty. This
barely scratches the potential of n-tier tech-
nology, however. By adopting a collaborative
model, multiple middle-tier objects can
apply their functionality to the data that
passes between the client and the server.

There are several methods that provide a UI
with database independence by using a tiered
application architecture. Although the prima-
ry goal is to reduce the task of recoding,
multi-tier architecture also provides savings
by avoiding the burden of rewrites to docu-
mentation and online help, and product sup-
port and testing.

General Rules
As a demonstration of that idea, I will design
a simple example application that will port
between two back-end data sources by using
a four-element architecture. While designing
this, I will keep in mind these general rules:
1) Rewriting code stinks.
2) End users should not be required to have

an awareness of where or how they are
obtaining their information.

3) The application should be portable
between back ends without having to
change the front end or the business logic
(BL) partition, i.e. the “business rules.”

You’ll note that these rules have their roots
in object orientation. Rule 1 simply points

On the Cover
out that we should inherit and reuse where possible. Rules
2 and 3 are veiled definitions of encapsulation.
Encapsulation will be a key to making this idea work; by
providing a standard interface between our application
partitions, we will make the job of porting far easier.
Treating each partition or partition of the application as a
separate and encapsulated object allows division of labor
and use of multiple tools at design time, as well as simpli-
fying overall maintenance.

In this article, I’ll define four partitions of an application:
user interface, business logic, data access, and data storage
(not to be billed as an exclusive list; merely the four necessary
to achieve the objective of this series). I’ll describe the steps
you need to take in building an application, as well as provide
rough analogies to the simple client/server model in a Delphi
application. To start, we’ll work from the client to the server,
describing the purpose of each partition in turn.

User Interface
General display and user interaction are contained here. This
element will be consistent throughout all deployments of the
application, regardless of the back end in use. The UI should
contain no data-access-specific code, and will exist solely to
translate data into information.

Note: If multiple front-end platforms are desired, the use of
the strategies presented in this article allow for any number of
functionally similar, front-end products to tie into a single
middle-tier element. In the most likely circumstance, this
would be a single, Java-based front end tying into a CORBA-
compliant middle tier. Other options are available, but this
would probably receive first consideration in most shops.

Business Logic
Validations, considerations, etc. that are corporation- or
application-specific are contained in this partition. This may
be malleable, dependent on whether different deployments
of the same application (i.e. different clients) have different
implementations of the same logic. In fact, this may be sepa-
rated into corporate and application modules to make two
partitions, allowing clients to perhaps include their own
“entry point” code in a vertical market application. (Note:
This is not as far-fetched as it may seem; a company I used
to work for did something along this line with their own
application and a run-time Lahey Fortran compiler.)

Data Access
All elements of direct access to a back-end database are stored
here. This partition will be built as a single module that gov-
erns interaction with a back-end database. Vendor-specific
details are provided here (e.g. queries for Oracle vs. InterBase,
one of which requires the database name as a prefix). This is
where the break from vendor-dependency is made.

The interface to this partition should be standardized to
allow multiple versions of this partition to be interchange-
able. A version would be created in the previous example for
15 January 1999 Delphi Informant
InterBase, and one for Oracle. When the product is shipped
or installed, the appropriate data access (DA) partition
would be included with the application. Because the inter-
faces of the two programs are the same, the front end will
not care which one it is accessing.

Data Storage
The actual data on which we operate is stored in the data
storage (DS) partition. Databases will contain common enti-
ties, each of which may have at least four routines performed
upon them: selects, updates, inserts, and deletes. Between
platforms, it will probably be obvious that some differences
will exist between the database definition language (ddl)
scripts of the different vendors. Hopefully, these changes will
be minimal, but hopes and reality rarely seem to coincide.

If the developers initially plan the back-end model with mul-
tiple vendors in mind, development of this can take place in
concert with the design of the DA partitions, respective to the
appropriate vendors.

The Process
Step one: The plan. The first step in all applications should be
planning. I can’t stress that enough. Even if the application in
question is tiny, plan it. Always have a goal, and always strive
toward that goal. I won’t say that work can’t be productive with-
out a plan, because some applications do happen to work with
seat-of-the-pants coding styles. However, we’re talking about
some very large and, in most cases, very expensive applications.

When the tools you use cost in the multiple thousands of dollars
(and Inprise is extremely inexpensive when compared to much of
the competition), the combined costs of developer salaries, oper-
ational overhead, and on-the-shelf selling times are dramatic —
not to mention that if a bad architecture decision is made early, a
good portion of the project will be dedicated to rewriting code.
Not only does that mean it’s expensive, it’s also unpleasant.

We can’t afford not to plan. For this step, I highly recom-
mend that you separate your plan into several steps. The first
of these is to model the business conceptually. This takes the
form of discovering “use cases” and building up your develop-
ers to have the general knowledge necessary about the busi-
ness for which the application is being written. In a vertical
market application, this is generally not a big concern (they
probably already know the business), but in a consulting
environment, this is critical.

The second step is to take the use cases developed and identi-
fy the various objects involved — consider everything an
object; actions, customers, rules, and inventory items are
objects. Arrange them in a hierarchical order and decide how
they logically work together. This is where the development
team will begin to see patterns and trends surface.

Start with the most general, and work down to the most
detailed. The mission statement of the application will be the
start: “Track the production and sale of widgets from the

On the Cover
purchase of raw materials to the delivery of finished products
to wholesalers and our retail arm.” This will yield the appli-
cation object and its purpose. The minutiae will be the last:
“Invoke the credit-card billing mechanism with the credit-
card number given.” This example would define the action
of processing a single credit-card number. In theory, the
application might then be able to track business flow from
the specific lot of raw materials to the mailing address of the
customer to whom a specific widget was sold.

If the entire object model was drawn on a whiteboard, it
would probably appear as an “org chart,” with the single
application entity at the top, extending its “roots” down
through more and more divisions to the bottom simple layer
of actions and data fields.

The third step is to identify commonalities among the objects
identified, and then develop a set of hypothetical classes and
ancestor classes. I’ll call these protoclasses, as we have only
developed an idea of their role, not their implementation.
Note that right now, we haven’t touched a bit of code, and
still haven’t made our tool selection. We’re still planning.

The final step of planning is to organize the protoclasses and
ancestor protoclasses into manageable, programmable ele-
ments. These will become the actual classes and ancestor
classes the team will develop to build the application. This
step will depend largely on the resources available to the pro-
gramming team; only they can determine what they can
accomplish in a given amount of time. The idea is to be
practical about what needs doing, and what might be going
overboard on class divisions. I will point out, however, that
Rule 1 exists for a reason, and I’ll restate it: Rewriting code
stinks. If you find yourself rewriting code more than once,
it’s time to further abstract what you’re writing.

Although I’m a freak for planning, I will point out that no plan
can foresee reality perfectly, and you shouldn’t be afraid to modi-
fy the plan if prevailing conditions demand it. Just make the
changes wisely, and you’ll probably avoid most pitfalls.

Step two: Division of function. Okay; we’ve got a plan. Now
what? Well, let’s look at what we’ve built so far. We have a busi-
ness model and a big fat bundle of protoclasses and ancestor pro-
toclasses. We know the operations and objects that will exist in
the application. We now need to identify where they belong.

In light of the subject matter, we’ve got to figure out what
classes belong in the UI, BL, DA, and DS partitions. Chances
are pretty good that we’re going to have analogous classes in
several layers. Look at each protoclass you have laid out in
your model and ask the following questions about it:

Does the user need to deal with it? If yes, it belongs at
least in the UI.
Does it exist solely to convey data back and forth? If yes,
it belongs at least in the DA.
Does it exist as a rule the company enforces in general
business practice? If yes, it probably belongs to the BL.
16 January 1999 Delphi Informant
Does the database need to deal with it? If yes, it belongs
at least in the DS.

Other questions will come up as you begin dividing these
protoclasses among the application partitions. Keep the focus
on identifying their roles within the application. Chances are
good that a number of additional needs will be identified;
create protoclasses for these as you go.

Step three: Develop the partitions. Once the protoclasses have
been divided among the logical partitions of the application, it’s
time to pick the tools for use and start coding. Tool choice, as
always, depends largely on the skill set of the existing develop-
ment team, and the capacity of the tool to get the job done. My
personal favorite is Delphi. Okay, so I’m biased; show me anoth-
er tool that can program all four layers (C++Builder doesn’t
count because it’s simply Delphi in disguise). Considering the
audience reading this, I’m guessing you understand.

A well-tuned development team will probably spend a good 40
percent of their budget before they write a line of code. That’s
important to note. The more time you spend in good planning,
the less time you’ll need to spend correcting. Note that I said
good planning. Sitting around a table and bandying words like
“paradigm shift” and “business rules” are for Dilbert and mar-
keting staff. You and everyone at the table should have a goal
and should know most of these words already. Spend your time
wisely, figuring out how to overcome problems you can foresee
in the upcoming development effort. This is the old pay-me-
now-or-pay-me-later problem.

To start with, make sure to target only a single back end. The
temptation will exist to try to kill two birds with one stone, but
honestly, it will be much easier to build a single DA partition
and modify it than to build two DAs with identical interfaces
as a parallel effort. If you’ve got the money to support this, fine.
If you don’t, however, let the income from the first release fund
your development of the second. You build experience by con-
structing your first practical classes from the protoclasses, and
cut time in development of the second set.

Remember that for the purposes of this article, we’re talking
about four partitions. I’m going to spell out a couple of ways
in which it can be done in Delphi 3 (unfortunately, Delphi 4
wasn’t out when I wrote this).

The actual development will ideally take another 40 percent
of the available budget. During the course of the later por-
tions of this time, documentation can be written based on the
use cases identified in the planning.

The difference between the two-tier model and the n-tier
model is in the distribution of processing load; we now have
three or more machines available to do our work for us, and
we also have means to isolate conceptual functions. In the
example I give here, I isolate DA from BL to allow my appli-
cation to hit two very different brands of data storage:
Paradox and InterBase.

On the Cover
First, a short discussion on just how n-tier works as it relates
to Delphi will be necessary; we’ll see the components needed
and how they interact. After that, I’ll discuss a few models of
n-tier. Then, we’ll see the working example.

N-tier, and What Goes Where
The old methods. On the DS side, we used to have to incorpo-
rate most of our business rules at the server if we wanted to
avoid re-deploying our software with every change to corporate
ideals. Now, we’re generally going to be ensuring solely that the
data is stored correctly, and we aren’t going to give that much of
a hoot whether the data is actually correct. This may sound
blasé, but really, the data side should only be concerned with
data. Dirty or clean, data is simply data. Given those conditions,
we’ll probably be talking about enforcing referential integrity via
either a manually constructed trigger set, or by the database
engine’s own RI capability. We might also be enforcing normal-
ization (for instance, checking to make sure we’re not entering a
duplicate lookup record or something). The validity of the data
in storage should be checked before it ever gets here.

In the two-tier model, we would have conceivably been enter-
ing all sorts of business logic to make a very “fat” server side.
Fortunately, we’re not doing that here, so no exhaustive SQL
will be necessary.

The next option was to place enforcement on the client side.
We did something like that in the previous example, in that
the client checks its data input prior to allowing it to be
updated. The actual action of validation is beginning at the
client, but we’ve used rules supplied from outside our influ-
ence. This allows a thin-client approach, as the bulk of the
validation code and the processing load sits off-site at one or
more middle-tier partitions.

Using Delphi or C++Builder, client-side validation normally
takes place at the TField level; it shouldn’t be a surprise that
TField has an OnValidate event. One could conceivably build a
UI that validates the entire record before posting, but I won’t get
into the gory details of that. Generally, when a user attempts to
update or enter a field value, Delphi checks if that field has a val-
idation event, and if it does, it gets fired. The developer’s code
looks over the new value, and if it passes all the conditions stipu-
lated in the developer’s code, it passes. Otherwise, the developer
cancels that edit by raising an exception or by some other means.
See the UI partition sample code, or the Inprise courseware on
field validation (in my example, look in prUIPartition, and check
its TEmployeeForm.EmployeesSalaryValidate method to see an
example of this).

Again, that example uses the UI to call the play, but the
actual actor that determines a pass/fail result is somewhere
outside the UI. I could just as easily have put the valida-
tion code in the UI, but that would have defeated the pur-
pose of the example.

New ways of validating. Now for the “new” stuff. Some of
the validation may actually take place at a middle tier in a
17 January 1999 Delphi Informant
couple of ways. I’ll start by describing how Delphi performs
n-tier operations.

We know we start at the data server, go to a middle tier
through its TDataSets, then to a UI with TClientDatasets that
refer to TProviders at the middle tier. How do we make the
middle tier actually do a lot of work for us?

Validating after server rejection. The most commonly
referred-to method is to use the TProvider.OnUpdateError
event. If we use explicit TProvider controls instead of the
auto-instantiated Delphi ones, we can write our own han-
dling of the occurrence of an error at the middle tier when it
tries to apply the changes in a delta packet to the server.

There is a good bit of online help about this, but the basic
process is that the middle tier receives a delta packet and process-
es its updates row by row. With each row, if, for some reason, it
cannot be applied to the server, the OnUpdateError event fires,
which allows the developer to insert code designed to handle
those conditions and possibly fix or reissue the update rather
than send it back to the user for checking (although that is the
preferred behavior). Any records left in the update cache after the
TProvider’s ApplyUpdates (records that triggered an
OnUpdateError and were assigned a response of rrSkip) will be
reissued to the client dataset for resolution there.

Step-by-step, the process is:
1) User applies updates via the TClientDataSet.
2) The TProvider at the middle tier receives the delta packet.
3) TProvider applies updates in the delta packet row by row.
4) Any row with a problem triggers an OnUpdateError event.
5) Resolution at the middle tier occurs.
6) Unresolved errors skipped remain in the delta packet cache.
7) The delta packet cache is returned to the TClientDataSet.
8) If an OnReconcileError event is defined at the client

dataset, it is fired for each row in the delta packet cache.
9) The developer’s code may determine how to respond to

the error in each row.

One warning: In handling the error and its reconciliation,
don’t navigate the dataset. This will throw off your record
buffer and blow the effort. Delphi is already in a loop to get
all the records, and additional navigation could knock it out
of whack. Just deal with the data as it is presented to you, and
don’t mess with where you are looking.

A great (if complicated) example of how an OnReconcileError
event can be dealt with is in the RecError unit, which I’ve
blatantly used from the EmpEdit demo. Those of you with
Client/Server editions already have this; on my system, it’s in
Program Files\Borland\Delphix\Objrepos\recerror.pas. One of
my biggest rules for development is, if it’s been written for
you, use it.

Validating before server submission. If you wish to actually have
your delta packet validated before submitting it to the server,
using a TProvider.OnUpdateData event allows you to investigate

On the Cover
what is going to be passed to the server. This view is read-only, so
the developer will be unable to apply any changes here. Unlike
OnUpdateError, however, this event doesn’t occur for every row;
instead, it occurs once per batch of updates. The developer is
responsible for cycling through the dataset. In doing so, he or she
can write code to log events, approve data values, etc. Also unlike
OnUpdateError, the developer cannot do “line-item vetos,” but
may only pass or fail the entire dataset (the easiest way to cancel
the update is to raise an exception in this event). [This process
differs in Delphi 4; see Bill Todd’s article “Delphi 4 Multi-tier
Techniques” on page 7 of this issue for details.]

Using these two events can allow your middle tier to do more
than just pass data back and forth; it really introduces a
means by which much of your logic work can get done out-
side the client system.

Until Next Month
We’ll delve into the code next month. However, you can take a
look at the example projects now if you’d like a preview (they’re
all available for download). Each project and the sample data
(i.e. the InterBase database) unzip into separate directories for
you to examine. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901TT.

Tom Theobald is a senior software developer with Segue Technologies of
Alexandria, VA. He began his career with computers as a NetWare engineer,
moving later to include NT and Lotus Notes among his acquired skillset. Now a
certified Delphi instructor, he makes his trade helping large corporations and gov-
ernment agencies acquire a much more Zen-like attitude toward software devel-
opment. He can be reached at theobaldt@seguetech.com with any business
inquiries, questions, or comments. Death threats and other matters of a personal
nature can be forwarded to eviltom@worldnet.att.net.
18 January 1999 Delphi Informant

19 January 1999 Delphi Informant

Informant Spotlight
MTS / Delphi 4 / Multi-tier Development

By Paul M. Fairhurst

Figure 1: A three-tier appli
MTS Development
Part II: Three-tier Development

Last month, we created a simple MTS (Microsoft Transaction Server) compo-
nent, installed it into the MTS environment, and called its methods from a

standard Delphi client application. If you’ll recall, we’re developing our com-
ponents for a fictitious bank named DelphiBank. This forward-looking bank
has decided to develop an application to provide its customers with online
banking. Each customer will be given a logon account and password, which
will allow them to view their account details, including current balance and a
list of transactions. They’ll also be able to make payments, deposit money,
and transfer funds between their accounts.
c

This month, we’ll implement simple logon
security. We’ll also concentrate on developing
server components that access a Paradox
database, and use the new BDE’s support for
pooling database connections from MTS
objects. We’ll then develop a client applica-
tion that uses DelphiBank services. (The
ation structure.
complete source for all projects discussed in
this article is available for download; see the
end of this article for details.)

Before we begin, we’ll walk through the
structure of a three-tier MTS system, and see
how the pieces of the DelphiBank system fit
in this structure. We’ll then work back from
the database through to the MTS server
objects, ending with the client application.

Structure of an MTS System
In Figure 1, notice the division of the MTS
system into three areas: User Services,
Business Services, and Data Services. User
Services executes on the user’s computer
and is what the user sees. It’s a lightweight,
standard Delphi application with no BDE,
nor data-aware controls, in sight. In MTS
terms, User Services is a Base Client, so
named because it directly accesses MTS
components from outside of MTS. The
Base Client is nothing more than a GUI
front-end to Business Services. No enforce-
ment of business rules takes place in this
layer, and no database access is allowed.

Figure 2: The example database
structure (<pk> = primary key,
<fk> = foreign key).

Informant Spotlight
Indeed, the client is unaware of the pres-
ence of a database.

The Business Services layer, also known as
the middle tier, contains MTS components.
The components provide a gateway between
the client and the data. MTS is installed in
this layer (which will almost always be on a
separate machine from the client, unless
you’re developing with one PC), which is
dedicated to serving client requests. The
components expose their functionality
through COM interfaces, which can be exe-
cuted by a Delphi COM client.

Having said this, another MTS object, or
any other client that supports the COM
model, such as Visual Basic or Visual
C++, could call the components. Business
rules are implemented in the Business Services layer. An
example of a business rule is ensuring a debit to an
account doesn’t cause that account’s balance to drop below
the minimum allowed. Another example is allowing only
managers to make payments of more than a certain
amount. The benefit of putting business rules in this layer
is that they can evolve without affecting the client installa-
tions. This is important because it lowers support and
maintenance budget requirements.

Middle-tier components know how to store data. They use a
Resource Dispenser, which provides access to data storage and
can dispense connections to resources quickly and efficiently by
pooling and re-using them. The new BDE that shipped with
Delphi 4, and the latest version of ODBC, are two such
resource dispensers. Generally, they use a resource manager, such
as Microsoft SQL Server or Oracle, that sits in the Data Services
layer. They provide durable, transaction-based storage of data.

The Data Services layer can reside on a separate machine
from the Business Services layer, depending on the expected
workload. With low loads, running both on the same
machine shouldn’t present a problem. As a system’s complex-
ity and traffic increases, however, they’ll each need dedicated
servers. Again, such a change will not affect client installa-
tions because the BDE is on the Business Services server and
only needs reconfiguring in this one place. As a final note,
resource managers allow data manipulation through stored
procedures. However, if the database is file driven, such as
with Paradox or Microsoft Access, the data manipulation
will have to be done in the Business Services layer.

The Database
We’ll use a Paradox database, so our data manipulation will
have to be done with TQuery objects in the MTS objects.
Figure 2 shows the database structure; we have four tables to
hold information about customers, their accounts, financial
transactions on each account, and the type of account, e.g.
Current, Savings, etc.
20 January 1999 Delphi Informant
We saw Account Types (table ACCTTYPE) in Part I of this
series. It defines the name of the account type, the default min-
imum balance, and interest rate applied to accounts of that
type, as well as a unique ID. Next, we have Customers (table
CUSTOMER). Here we store the customer ID, customer
name, logon ID and password, plus any notes about the cus-
tomer. Each customer can have many accounts (table
ACCOUNTS) of different types; hence, in this table, we must
store the customer ID and account type ID. We also generate a
unique account number for each account and hold the account’s
current balance, allowed minimum balance, and the date and
time of when the last bank statement was sent to the customer.

Finally, each account can have many transactions (table
TRANSACT). Here we hold a unique transaction ID, the
account ID, a reference string (such as “DEP” for deposit),
the amount of the transaction, and a timestamp of when the
transaction took place. In the case of transferring money from
one account to another, two transactions would appear: one
deducting the money from account 1, and the other deposit-
ing the money into account 2.

Server Component Structure
The server component contains four MTS objects:
AccountTypes2, Accounts, Customers, and Transactions. Each
handles operations on a table in the database, and imple-
ments the IAccountTypes2, IAccounts, ICustomers, and
ITransactions interfaces, respectively. We implemented an
IAccountTypes interface in Part I. Because the interface meth-
ods have changed, COM standards dictate that we define an
entirely new interface so we don’t break existing clients of
IAccountTypes. The accepted way of doing this is to name the
new interface with a succeeding number.

You can see the objects and interfaces in Figure 3, which
shows the type library for our MTS component,
DelphiBankServer2, in the Delphi Type Library Editor. The
IAccounts interface is open, revealing its methods. The
Accounts object implements IAccounts, and thus supports all

Figure 4: Example OnActivate and OnDeactive methods.

procedure TAccounts.OnActivate;

begin
try

{ Create our own datamodule. }
dmAccounts := TdmAccounts.Create(nil);
if Assigned(dmAccounts) then

dmAccounts.DbDelphiBank.Open;

except
end;

end;

procedure TAccounts.OnDeactivate;

begin
try

if Assigned(dmAccounts) then begin
dmAccounts.DbDelphiBank.Close;

dmAccounts.Free;

end;
dmAccounts := nil;

except
end;

end;

mponent’s type library.

Informant Spotlight
the functions in this interface. When
a client creates an Accounts object,
they know all methods of IAccounts
will be implemented.

The method selected in Figure 3 is
ListByCustID, which returns a list of
accounts for the given customer ID.
You can see the function parameters
on the Parameters page on the right-
hand side of the Type Library Editor.
Every function in every interface
starts with the parameter ClientKey,
and ends with strDebug. The client
key is obtained when a customer is
logged on, and it’s used to time out
client connections. (We’ll implement
client key functionality in Part III of
this series.) The debug string is
assigned whenever an error or excep-
tion occurs inside an object method. Debugging MTS
server components can be tricky, and simple feedback like
this proves extremely useful when developing. The debug
messages can also be optionally passed back to the client,
usually when a business rule is blocking the action. Notice
the third parameter, varResultSet of type OleVariant. This
is how we pass back a query result set from a database
query to the client. We’ll see how to do this shortly.

As mentioned before, each object handles a particular table
in the database. Also, each object has its own data module
that contains all the TQueries it needs to perform its tasks,
as well as a TDatabase component that provides a database
connection for them. All four data modules are descended
from a common data module, DelphiBankCommonDM, that
gives the data modules access to field-name constants and
some common code. Each data module is created and man-
aged by its related object. When it’s created, a data module
automatically opens a connection to the database, and closes
it when the data module is destroyed. This way, the queries
contained in the data module are always available.

We will now focus on the Accounts object, in particular the
ListByCustID and Transfer methods. The functionality of the
remaining objects is coded in a similar way. Once you under-
stand how the Accounts object works, you should have no
problem understanding how the others work.

The Accounts Object
Every MTS object descends from TMtsAutoObject, which
provides the back-drop functionality for your object to
interact with MTS. There are two methods here that can be
overridden: OnActivate and OnDeactivate. You know from
last month’s article that MTS activates and deactivates
objects to conserve system resources. When this happens to
your object, these methods get fired. Therefore, this is the
place to allocate and free resources (e.g. a database connec-
tion) held by your object.

Figure 3: The MTS co
21 January 1999 Delphi Informant
If you look at Figure 4, you’ll see that is exactly what we do.
In OnActivate, we create the object’s data module and open
the database connection. In OnDeactivate, we do exactly the
opposite. You may think that opening and closing connections
like this would be time consuming. However, if you open the
BDE Administrator, go to the Configuration page, then open
System, select Init, and change the option MTS Pooling to True,
a little magic happens. This option does two things. First, the
BDE will pool connections to databases from MTS objects,
which means that new connections are quickly allocated from
old connections. Secondly, MTS objects that use transactions
and connect to databases through the BDE will automatically
have their work enlisted in a database transaction. Therefore,
it’s very important that you turn this option on if you want
full transactional support.

At the time of writing, there is much activity in the news-
groups about MTS pooling in the BDE. Quite a few people

...
try

CheckDbOpen;

{ Set up the query. }
with dmAccounts do begin

{ Run the query. }
QryAccountReadByCustID.ParamByName(

cFieldCustID).Value := CustID;

QryAccountReadByCustID.Open;

{ Package the result. }
CreateVarArrayFromDataset(varResultSet,

QryAccountReadByCustID);

QryAccountReadByCustID.Close;

end;
SetComplete; { OK. }
Result := cOKResult;

except on E: Exception do begin
SetAbort; { Problem encountered. }
dmAccounts.QryAccountReadByCustID.Close;

strDebug := 'TAccounts.ListByCustID() - ' + E.Message;

Result := cErrResult;

end;
end;

Figure 5 (Top): A portion of the TAccounts.ListByCustID method.
Figure 6 (Bottom): Creating a Transactions object from inside
an MTS object.

var
TransactionsIntf : ITransactions;

begin
...

try
OleCheck(ObjectContext.CreateInstance(

CLASS_Transactions,ITransactions,TransactionsIntf));

except
raise Exception.Create(

'Could not create Transactions object');

end;
...

end

Informant Spotlight
seem to be having problems with it — myself included. I’m
not entirely convinced that this new feature is 100-percent
solid. If you experience problems, try turning it off. Be aware,
though, that if a transaction fails, it won’t be rolled back.
Finally, another important thing you should know is that you
must put BDEMTS in the uses clause of your MTS objects.
Without it, they won’t take part in MTS transactions. The
MTS object wizard should have done this automatically, but
unfortunately, does not.

The ListByCustID method in Accounts takes a customer ID
and returns a list of accounts for this customer (see Figure 5).
Here, the CheckDbOpen method simply checks that the
data module has been successfully created, and the data-
base connection has been opened (by OnActivate). If this
isn’t the case, an exception is immediately raised and the
method aborts. You can see from the code that if an excep-
tion occurs, a call to SetAbort is made, which stops the
current transaction from committing. Any open queries
are closed, and the strDebug variable is filled with the
exception message. A non-zero return code is returned by
the function to indicate failure. If the database has been
opened successfully, a query is filled with the customer ID
22 January 1999 Delphi Informant
and executed against the database. The result set is then
packed into a variant array (more on this shortly), which is
returned to the client.

Acquiring the Data
Querying the database is straightforward. Things get a little
more tricky when we want to insert or update information.
For instance, the Transfer method has to debit money from
the source account, deposit it into the destination account,
and fill out two bank transactions in the TRANSACT table.
Moreover, it must enforce business rules and ensure it all
happens within one transaction so money is never lost.

Luckily, MTS objects can enlist the help of other MTS
objects, so if another object already implements the function-
ality you need, you can capitalize on it. Because the
Transactions object implements functionality to add a new
bank transaction with the AddNew method, that’s exactly
what we’re going to do.

Here’s the declaration of the Transfer function:

function TAccounts.Transfer(ClientKey, SrcAcctID,

DestAcctID: Integer; const TrnRef: WideString;

TrnAmount: Currency; ForceFailure: WordBool;

var strDebug: WideString): Integer;

You can see it takes the usual client key, debug string,
source and destination account, transaction reference, and
the amount to transfer. It also takes a parameter named
ForceFailure, which allows the caller to force a failure in the
middle of the transfer to demonstrate and test transaction
rollback. If a failure occurs, the balance of the source and
destination accounts shouldn’t change, and there should be
no record of a bank transaction.

The first thing the Transfer function does, after checking that
the database is open, is to create a Transactions object to help it
complete its task (see Figure 6). We use the object context’s
CreateInstance function. We pass in the Class ID (GUID) of the
Transactions COM object (created for us in the type library), the
interface we want on the object, and the variable that will hold
the interface pointer if the call succeeds. The COM utility func-
tion, OleCheck, checks the return status of the call, and raises an
exception if the call fails. If the call succeeds, the created object
is enlisted inside the Accounts current transaction.

Figure 7 shows the code that makes the transfer. The
AddToBalance function first checks that adding the transaction
amount won’t cause the balance of the account to drop below
the minimum allowed (remember the amount can be negative).
This is a business rule in action. If the rule is broken, an excep-
tion is raised and the transaction will be rolled back. Otherwise,
a query is set up and executed, which adds the transaction
amount to the destination account’s balance. The Transactions
object we created is then used to add a new bank transaction to
the destination account. Finally, after checking for a forced fail-
ure, we proceed to deduct the transaction amount from the
source account in a similar way, and add a bank transaction. If

Figure 7: The core of TAccounts.Transfer.

{ Deposit the amount to the destination balance. }
if not AddToBalance(ClientKey, DestAcctID, TrnAmount,

dmAccounts, strDebug) then
raise Exception.Create(strDebug);

{ Deposit the money from the destination. }
if TransactionsIntf.AddNew(ClientKey, DestAcctID, TrnRef,

TrnAmount, strDebug) <> cOKResult then
raise Exception.Create(strDebug);

{ If we are testing a transaction failure, do it now. }
if ForceFailure then

raise Exception.Create(

'Forced failure - Amount deposited but not deducted.');

{ Deduct the amount from the source balance. }
if not AddToBalance(ClientKey, SrcAcctID, -TrnAmount,

dmAccounts, strDebug) then
raise Exception.Create(strDebug);

{ Deduct the money from the source. }
if TransactionsIntf.AddNew(ClientKey, SrcAcctID, TrnRef,

-TrnAmount, strDebug) <> cOKResult then
raise Exception.Create(strDebug);

SetComplete; { OK. }
Result := cOKResult;

TransactionsIntf := nil;

Informant Spotlight
all goes well, we make our call to SetComplete, and set our
Transactions object interface pointer to nil, which releases it.

Getting Data Back to the Client
I promised earlier that I’d show you how we get a result set of
data from a database query back to the client from inside an
MTS object. Getting singular information back, such as the
customer name or account balance, is easy because we simply
use var parameters. A result set is different. It contains a vari-
able number of columns of information of differing types,
and a variable number of rows of actual information. A result
set such as this can be represented with a two-dimensional
array. However, we won’t know anything about the type of
data we’re passing back until run time. Furthermore, the only
data that can be passed back has to be of an Automation-
compatible type so that COM can marshal it. Variants are
Automation-compatible and can hold data of varying types.
The solution then is a two-dimensional variant array.

From a given result set with m columns and n rows, we’ll create
and populate a variant array with its structure, as shown in
Figure 8. The column display labels are always placed in row 0.
23 January 1999 Delphi Informant

Figure 8: Structure of the variant array result set. The array is [0..m

[0,0] Col Label [1,0] Col Label

[0,1] Row 0 Data [1,1] Row 0 Data

[0,2] Row 1 Data [1,2] Row 1 Data

[..,..] [..,..]

[0,n-1] Row n-2 Data [1,n-1] Row n-2 Data

[0,n] Row n-1 Data [1,n] Row n-1 Data
The rest of the rows, if any, are populated with the values from
the result set. Advanced information, such as display width and
custom constraints — the kind of thing you get in a TField —
isn’t passed back using this method. That doesn’t mean you
couldn’t write some code to do it. Admittedly, it may not be as
pretty, or as easy, as using TDatasets and data-aware controls,
but this is the price you pay for maximizing server resources.

Incidentally, the MIDAS services that come with Delphi 4
are aimed at this area. They take the hassle out of getting
information back from the Business Services layer, but at the
expense of a server license when you deploy. Our way of
doing things doesn’t use MIDAS. We have to move data back
ourselves, but it’s a whole lot cheaper. The method that does
the packaging of a dataset into a variant array is named
CreateVarArrayFromDataset. It’s a member of the
TDmDelphiBankCommon data module. You pass in an open
dataset from a query or stored procedure, and it returns a cre-
ated and fully populated two-dimensional variant array that
can be sent back to the client (again, see Figure 8).

We’ve looked at the server in some depth. Before we move on
and look at the client, however, let’s examine the object con-
text methods in detail so you’re familiar with all of them.

The Object Context in Detail
The object context can be directly accessed with the
GetObjectContext function. This returns an IObjectContext
interface (its methods are shown in Figure 9). We’ve already
seen CreateInstance, SetComplete, and SetAbort in action. The
IsSecurityEnabled and IsCallerInRole methods are used when
employing MTS security features, which we’ll see next month
in Part III. IsInTransaction returns True or False to indicate if
the current object is executing inside a transaction.

When you create an MTS object, you must specify its trans-
actional requirements:

Requires — MTS will make sure the object runs in a
transaction, creating a new one if necessary.
Requires New — MTS will create a new transaction for
the object even if the client already has one running.
Supported — Indicates the object doesn’t necessarily need
a transaction, but will work quite happily inside one if
the client has one running.
Does Not Support — The object is probably old legacy
code and doesn’t understand MTS transactions, i.e. it
doesn’t call SetComplete or SetAbort.
-1, 0..n] for m columns and n rows.

[2,0] Col Label [m-1,0] Col Label

[2,1] Row 0 Data [m-1,1] Row 0 Data

[2,2] Row 1 Data [m-1,2] Row 1 Data

[..,..] [..,..]

[2,n-1] Row n-2 Data [m-1,n-1] Row n-2 Data

[2,n] Row n-1 Data [m-1,n] Row n-1 Data

Informant Spotlight

Figure 9: The IObjectContext interface methods.

Function Description

CreateInstance Instantiates another MTS object. All
context information is transferred to the
created object, so the new object will be
enlisted in any current transaction.

EnableCommit Tells MTS the object hasn’t necessarily
finished its work, but the transaction can
be committed in its current form. The
object is not deactivated and retains its
state between method calls.

DisableCommit Tells MTS the object hasn’t necessarily
finished its work, and that the transac-
tion cannot be committed in its current
form. The object isn’t deactivated, and
retains its state between method calls.

SetComplete Tells MTS the object has finished its work,
and the transaction can be committed. The
object is deactivated on exit from the method.

SetAbort Tells MTS the object has finished its work,
but the transaction can never be commit-
ted. The object is deactivated on exit from
the method.

IsCallerInRole Indicates if any object’s direct caller is in
a particular role (used in security).

IsInTransaction Indicates if the object is currently taking
part in a transaction.

IsSecurityEnabled Indicates whether MTS security is enabled.

iBank client in action.
The remaining two methods in the IObjectContext interface
are EnableCommit and DisableCommit. Remember stateful
and stateless components? Well, if you’re writing a stateful
component, you’ll want your object to retain its state
between method calls. So, instead of calling SetComplete or
SetAbort (which deactivates the object), call these. The object
won’t be deactivated when the method finishes, and proper-
ties in your object will keep their val-
ues. The difference between the meth-
ods is transactional. With
EnableCommit, you’re signifying that
any currently running transaction could
be committed by MTS in its current
form. With DisableCommit, you’re for-
bidding the current transaction from
being committed until you say so.

The Client
This completes our discussion of the
server. All we need now is a client. The
client itself was written by an excellent
Delphi programmer and good friend of
mine, Mark Smith. The interesting
thing about this is that I created the
type library, stubbed all the functions
with a “Not Implemented” message,
and gave it to him. I then proceeded to
implement the server functionality
while he simultaneously developed the Figure 10: The Delph
24 January 1999 Delphi Informant
client. It really does work well this way, and it forces you to
think very hard about your problem domain before you can
give someone a type library full of methods!

I’m not going to say too much about the client code, as I
prefer to concentrate on MTS server functionality. Suffice
it to say, it imports the type library from the server, and
has some classes that support creating and freeing of
instances of the server objects. The actual implementation
of the client is an MDI-style application, as shown in
Figure 10. You can see I have logged in as myself (user ID
“paul”; password “paul”) and as William Gates (user ID
“william”; password “william”). With each login ID is pre-
sented a list of accounts and their details, such as current
balance, last statement date, etc. If you double-click on an
account, you’re presented with all the transactions on the
account since the last statement. The application allows
you to pay a bill, deposit money, and transfer money from
one account to another. When you perform such an opera-
tion, a message is sent to all windows in the application
that are interested in any account you just modified to
notify them that a change has occurred. So if you open the
bank transactions window for account A, and transfer
money from account A to account B, the bank transac-
tions window would refresh and immediately display the
new transfer. The whole application is strictly a front-end
for the server objects, and performs no verification of what
you enter — that’s the Business Services layer’s task.

The amazing thing is, if this was a delivered system, and the
customer wasn’t happy with the current client (say they want-
ed a Web version), you could completely scrap it and not lose
any Business Services or Data Services functionality. The divi-
sion between the client and server is so clean that the MTS
components would remain intact, and work perfectly for the
new client. In fact, the client itself needn’t be a Delphi appli-

Informant Spotlight
cation. Because the objects are COM objects, you could drive
them with, say, Microsoft Active Server Pages, or a Cold
Fusion Web server. That’s the sort of code reuse the industry
desperately needs.

Conclusion
We’ve covered a lot of ground in Part II. We’ve seen how
to structure a three-tier MTS application. We’ve talked
about the IObjectContext interface and its methods. We’ve
seen how one MTS object can use another while keeping
the work inside one transaction. We also learned how to
get result data from a dataset back to the client, and we’ve
looked at a real client using our component’s services in a
real-world scenario.

In the third and final part of this series, we’ll take a look at
how MTS security can block unauthorized calls to your
components and how Roles can help you implement busi-
ness logic by grouping together related users. We’ll look at
the MTS explorer in more detail, and see how it monitors
and provides statistics for transactions. We’ll also see how
easy it is to move our client to another machine by using the
MTS client installation export utility. Finally, we’ll look at
the Shared Property manager, which allows objects to quick-
ly share information with each other. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901PF.

Paul M. Fairhurst is a First Class Computer Science graduate of Sheffield University
and freelance consultant/programmer specializing in client/server and multi-tier
database development. He is currently developing information systems for BBC
Television and Radio in London. You can contact him at paul@c-s-c.demon.co.uk.
25 January 1999 Delphi Informant

26 January 1999 Delphi Informant

DBNavigator
TDataSet / TField

By Cary Jensen, Ph.D.

Figure 1: The
and record ed
Delphi Database Development
Part V: Navigation and Editing

Over the past few months, this column has undertaken a systematic
re-examination of Delphi database development. This month’s

installment of “DBNavigator” continues this series with a look at basic
dataset navigation and editing. You might recall that Table components,
as well as many types of Queries and StoredProc components, return a
set of one or more records. This is also true of ClientDataSet components.
These components permit you to move a cursor between the various
records in the set, and to make changes to these records (if they aren’t
set to read-only).

i

(It’s worth noting that some Query and
StoredProc components don’t reference a set of
records. For example, a Query that holds a
SQL CREATE TABLE statement doesn’t have
a cursor for a set of records. These datasets are
special, and the descriptions found in this
month’s “DBNavigator” don’t apply.)

Basic Navigation
When a DataSet is first opened, either by set-
ting its Active property to True or by calling
EDITDEMO project demonstrates basic navigation
ting.
its Open method, the internal cursor for the
DataSet is set to point to the first record in
the set. It’s then possible to navigate the
DataSet using the methods First, Last, Next,
and Prior. These same methods are called by
components, such as TDBNavigator, when
the user clicks on the corresponding buttons.

There are other methods that can be used to
navigate records. These include MoveBy,
which permits you to move forward and
backward by some number of records that
you specify. Other methods move the cursor
by searching records based on their contents.
These methods include FindKey,
FindNearest, and Locate. These searching
methods will be discussed in detail in next
month’s “DBNavigator.”

There are two Boolean properties that are
also useful when your code needs to navigate
records. These are BOF (beginning of file)
and EOF (end of file). BOF returns True
when your code has attempted to move
beyond the beginning of a table. This hap-
pens when you’re already on the first record
and you issue a call to the Prior method, or
you call MoveBy with a negative parameter

Figure 2: Code associated with the Scan button displays the sc
ning speed.

Figure 3: The Scan button’s OnClick event handler.

procedure TForm1.Button1Click(Sender: TObject);

begin
Button1.Enabled := False;

LabelStart1.Caption := IntToStr(GetTickCount);

Table1.First;

while not Table1.EOF do begin
Table1.Next;

end;
LabelEnd1.Caption := IntToStr(GetTickCount);

LabelTotal1.Caption := 'Milliseconds: ' +

IntToStr(StrToInt(LabelEnd1.Caption) -

StrToInt(LabelStart1.Caption));

Button1.Enabled := True;

end;

DBNavigator
whose value is less than the current absolute record number.
Likewise, EOF returns True when you attempt to move
beyond the end of a table. Similar to what happens with
BOF, this occurs if you call Next while on the last record of a
table, or call MoveBy with a positive parameter whose value
is greater than the number of records remaining in the table.
Merely moving your cursor to the first or last record isn’t suf-
ficient to cause a BOF or EOF to return True, respectively.
You must actually attempt to move beyond the first or last
record for this to happen.

The following code example demonstrates the use of First,
Next, and EOF. This code navigates to every record in a
table pointed to by the Table component named Table1,
beginning with the first record in the index order:

Table1.First;

while not Table1.EOF do begin
// Do something with the record.
Table1.Next;

end;

This type of operation is often referred to as a “scan.” In a real
scan, your code would do something as it visits each record,
such as accumulate a summary calculation, or make a change
27 January 1999 Delphi Informant
to some or all records visited. Once the basic data read
and write operations are described, more meaningful
versions of this scan will be shown.

The use of this simple scan is demonstrated in the
EDITDEMO project, shown in Figure 1 (available
for download; see end of article for details). This pro-
ject contains a Table component that points to the
ORDERS table from the sample files installed with
Delphi. The contents of the Table component are
displayed in a DBGrid. If you click on the Scan but-
ton, you’ll see visible results of the scan operation, as
the records of the DBGrid scroll rapidly from the
first to the last records in the ORDERS table.

The code associated with the Scan button also
includes instructions that display an indication of
the scan’s performance. This display involves three
Label components. One Label displays the operat-

ing system tick count immediately before the scan opera-
tion, the second displays the tick count following the com-
pletion of the scan, and the third displays the number of
ticks that passed during the scan. Each tick represents a
millisecond. Figure 2 shows the results of a typical scan of
the ORDERS table on a 150 MHz machine with 64MB of
RAM. In this case, the entire scan requires slightly longer
than one second (1,362 milliseconds, to be precise). The
code shown in Figure 3 is associated with this button’s
OnClick event handler.

While being able to watch the records scroll may be enter-
taining, it slows down the scanning process tremendously.
This is because the DBGrid must be repainted each time the
cursor moves to another record. Painting operations are
among the most resource intensive, so they should be avoid-
ed if possible. Fortunately, the DataSet classes include the
DisableControls method, which you can use to suppress the
notification that the dataset otherwise sends to any associat-
ed DataSources. Because it’s the DataSource that instructs
the DBGrid to repaint itself after a DataSet record naviga-
tion, calling DisableControls permits a DataSet to navigate
without repainting data-aware controls.

There is a danger associated with using DisableControls, how-
ever. Specifically, you must be sure to call EnableControls fol-
lowing a call to DisableControls, or your data-aware controls
will be inoperative. Unfortunately, simply including a call to
EnableControls following a scan isn’t sufficient. You must
include the call to EnableControls within the finally portion
of the try..finally block, which you enter immediately follow-
ing the call to DisableControls. This approach is necessary to
guarantee the execution of EnableControls if an exception
occurs following the call to DisableControls, but before
EnableControls is executed.

The use of DisableControls and EnableControls with a scan is
demonstrated in the Scan - No UI Update button in the example
project. The code shown in Figure 4 is from this button’s

an-

Figure 4: Code for the Scan - No UI Update button’s OnClick
event handler.

procedure TForm1.Button2Click(Sender: TObject);

begin
Button2.Enabled := False;

Table1.DisableControls;

LabelStart2.Caption := IntToStr(GetTickCount);

try
Table1.First;

while not Table1.EOF do begin
Table1.Next;

end;
LabelEnd2.Caption := IntToStr(GetTickCount);

LabelTotal2.Caption := 'Milliseconds: ' +

IntToStr(StrToInt(LabelEnd2.Caption) -

StrToInt(LabelStart2.Caption));

finally
Table1.EnableControls;

Button2.Enabled := True;

end;
end;

DBNavigator

Figure 6: Use the Add Fields dia-
log box to add individual fields to
the Fields Editor.

Figure 5: Using DisableControls greatly improves scan performance.
OnClick event handler. Figure 5 shows how the example project
might look after clicking this button. Note the enormous per-
formance improvement over the scan without DisableControls.
When DisableControls was used, the scan took 10 milliseconds,
or 1/100th of a second — a fraction of the time required when
DisableControls wasn’t used.

Reading Data
While the TDataSet classes permit you to navigate data, they
don’t provide the ability to read the data. That capability is
provided through a collection of classes referred to as TFields.
While there is a class named TField, you don’t work directly
with it. Instead, you work with one of its descendant classes,
such as TStringField, TBlobField, or TIntegerField.

When a dataset is first opened, one TField descendant is creat-
ed for each of the columns in the underlying data file. Which
TField descendant is created depends on the data type of the
corresponding column, which is dynamically determined by
the BDE. Each TField can be used to read the data in the
associated column of the dataset. In addition, if a particular
TField is not read-only, and the dataset can be edited, you can
also write to the field using TField.

There are two general techniques you can use to access the
TFields of a dataset. The first is to use the properties and
methods of the dataset component itself. The Fields proper-
ty of a dataset is an array of pointers to TFields that are
automatically created when the dataset is opened. The
TFields in Fields are indexed based on the structure of the
underlying table. For example, Table1.Fields[0] references
the TField associated with the first field in the table, while
Table1.Fields[2] references the third.

Using the Fields property gives you the most efficient access to
the individual fields of a dataset, but these references aren’t very
informative. If you’d rather refer to a TField based on the field’s
name, use the FieldByName method, which takes a single string
parameter. When calling FieldByName, you pass the name of
28 January 1999 Delphi Informant
the underlying field to which you
want access, and it returns a TField
reference to that field. For example,
to reference the OrderNo field of a table named Table1, you
can use Table1.FieldByName('OrderNo'). Accessing TField
descendants using FieldByName is slower than using the Fields
property, because, internally, FieldByName must first look up
the ordinal position of the field in the table’s structure.
However, FieldByName is easier to read, thereby reducing the
number of errors due to incorrect column references.

The second means of accessing the TFields of a dataset is to
instantiate the individual TField components at design time.
You do this using the Fields Editor, which is displayed when
you right-click a dataset and select Fields Editor (or simply dou-
ble-click on it). From the Fields Editor, right-click and select
Add Fields. This displays the Add Fields dialog box, shown in
Figure 6. Select the fields you want to add, then click OK. The
instantiated fields then appear in the Fields Editor, shown in
Figure 7. (In Delphi 4, you can instantiate all fields simply by
displaying the Fields Editor and pressing Cf.)

The TFields instantiated using the Fields Editor are given
default names produced by adding the name of the dataset
to the name of the field. For example, in the EDITDEMO
project, the instantiated OrderNo field is named

Figure 7: The Fields
Editor lists the currently
design-time-instantiated
TFields for a dataset.

DBNavigator

Figure 8: A scan demonstration.

procedure TForm1.Button3Click(Sender: TObject);

var
SumofSales: Currency;

begin
SumOfSales := 0;

Button3.Enabled := False;

LabelStart3.Caption := IntToStr(GetTickCount);

Table1.DisableControls;

try
Table1.First;

while not Table1.EOF do begin
SumOfSales := SumOfSales +

Table1.FieldByName('ItemsTotal').AsCurrency;

Table1.Next;

end;
LabelEnd3.Caption := IntToStr(GetTickCount);

LabelTotal3.Caption := 'Milliseconds: '+

IntToStr(StrToInt(LabelEnd3.Caption) -

StrToInt(LabelStart3.Caption));

finally
Table1.EnableControls;

Button3.Enabled := True;

ShowMessage(FormatCurr('$ #,###.##',SumOfSales));

end;
end;

Figure 9 (Top): Scan performance while data is being read.
Figure 10 (Bottom): Code associated with the Edit ShipToState
button in the EDITDEMO project to enclose the editing of each
record within its own try..except block.

procedure TForm1.Button4Click(Sender: TObject);

var
Undo: Boolean;

begin
Table1.First;

if Table1.FieldByName('ShipToState').AsString = '' then
Undo := False

else
Undo := True;

Button4.Enabled := False;

LabelStart4.Caption := IntToStr(GetTickCount);

Table1.DisableControls;

try
Table1.First;

while not Table1.EOF do begin
try

Table1.Edit;

if Undo then
Table1.FieldByName('ShipToState').Value := ''

else
Table1.FieldByName('ShipToState').Value :=

Table1.FieldByName('PaymentMethod').Value +

' ' + Table1.FieldByName('OrderNo').AsString;

Table1.Post;

Table1.Next;

except
// Handle a failure to edit or post here. In this
// example, ignore records that cannot be edited or
// posted.

end; // try-except
end; // begin

LabelEnd4.Caption := IntToStr(GetTickCount);

LabelTotal4.Caption := 'Milliseconds: '+

IntToStr(StrToInt(LabelEnd4.Caption) -

StrToInt(LabelStart4.Caption));

finally
Table1.EnableControls;

Button4.Enabled := True;

end; // try-finally
end;
Table1OrderNo. When you use this reference in your code,
you access the OrderNo column for whichever record the
corresponding dataset is currently pointing to. This is
always the case. A TField represents a column, but the
dataset references the record.

To use a TField descendant, reference its properties. For
example, the AsString property of a TIntegerField reads the
contents of the corresponding column as a string, while the
Value property returns the contents of the underlying column
as a variant. While TField descendants have methods, most of
these are intended for the internal use of the component.

The code shown in Figure 8 demonstrates a scan. During the
scanning operation, the value of the ItemsTotal field is accu-
mulated in a Currency variable. The total value is displayed
following the end of the scan. The performance of the scan
when data is being read is shown in Figure 9.

Note: This type of operation — calculating the sum of a
field — can be performed using a SQL query. In fact,
many of the features you produce using a scan can also be
produced using SQL. Indeed, in many instances, a SQL
query is much faster than a scanning operation. However,
there are situations where SQL queries can’t be used, such
as when you want to perform a scan on the result set
returned by a query.

Editing Data
Editing data during a scan is more involved than simply read-
ing data. In short, you must place a dataset in the dsEdit state
before changing a record, and you must explicitly post the
change before attempting to move off the record. Posting
returns a dataset to the dsBrowse state.

You place a dataset in the dsEdit state by calling its Edit
method. For some databases, such as Paradox, placing a
29 January 1999 Delphi Informant
dataset in the dsEdit state creates a record lock. For tables such
as these, if a record that you want to edit is already locked by
another user, the call to Edit fails, raising an exception.

Even for datasets that don’t place pre-emptive locks when you
enter the dsEdit state, the post operation can still fail, also by
raising an exception. This will occur if the record being post-
ed is rejected by the underlying dataset due to key violations
or invalid data. Likewise, if the record being posted was

Figure 11: Writing to a table during a scan increases scan duration
over simply reading.

DBNavigator
updated by another user (after the record was read, but before
it was posted), the posting will fail.

If you write scanning code that writes to a dataset, you must
ensure that exceptions raised by the Edit and Post methods are
handled. This requirement is in addition to the previously
discussed try..finally block that ensures the eventual call to
EnableControls. A typical scenario is to enclose the editing of
each record within its own try..except block, handling any
failures within the except clause. If you want to continue to
scan additional records — even if one or more records can’t
be updated due to exceptions — this try..except structure
must appear inside the scan’s while loop. This technique is
demonstrated by the code associated with the Edit ShipToState

button in the EDITDEMO project (see Figure 10). Figure 11
depicts how the project appears after clicking this button.
30 January 1999 Delphi Informant
Admittedly, this example is contrived; it alternates between
assigning a value to the ShipToState field, and then clearing
the field. This meaningless edit was performed so that if you
download this example project and run it, you can always
return the ORDERS table to its original state (where the
ShipToState field is blank for every record). However, the
example does serve its intended purpose by demonstrating the
basics of record editing during a scan operation.

Conclusion
Using Delphi’s various DataSet components, you can easily navi-
gate between the multiple records of a table. The process of read-
ing and writing the values of columns, however, makes use of
TField descendants. TFields can be accessed by the DataSet.Fields
property, the DataSet.FieldByName method, or by working
directly with design-time instantiated TField components.

In next month’s “DBNavigator,” this series continues with a
look at record searching methods. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally-respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

31 January 1999 Delphi Informant

Algorithms
Delphi 1, 2, 3, 4 / Tree Structures

By Rod Stephens
Tree Management
The Care, Feeding, and Implementation of Delphi Trees

Last month’s algorithmic excursion involved networks. Using node and
link classes, it showed how to implement a dynamic network data struc-

ture, and use that structure to find the shortest path through a network. This
article discusses another kind of dynamic data structure: the tree. Trees are
well suited for managing hierarchical relationships among data items. They
can also be used to maintain sorted lists while allowing fast searching and
retrieval. This article explains trees, and shows how you can use different
tree structures in your Delphi programs.
Tree Terms
Before you study trees, you should know
some basic terminology. You can define a
tree recursively as a data structure with a
root node connected to zero or more sub-
trees. Trees are customarily drawn with the
root node at the top, as shown in Figure 1.
The tree in Figure 1 consists of a root
node labeled A connected to two subtrees
with roots B and C. The subtree with root
B has a root node connected to two sub-
trees with roots D and E. The trivial trees
with roots C, D, and E are connected to
no other nodes.
Figure 1: A tree.
The nodes in a tree are connected by links or
branches. Each branch defines a parent-child
relationship between the two nodes it con-
nects. The upper node is the parent and the
lower node is the child. The nodes along the
path from a node to the root are the node’s
ancestors. Conversely, if a node is another’s
ancestor, then that node is the ancestor’s
descendant. For example, in Figure 1 nodes A
and B are ancestors of node E. Nodes D and
E are the descendants of node B.

The degree of a node is the number of chil-
dren it has. The degree of the tree is the
largest degree of any node. Trees of degree
two are called binary trees and trees of degree
three are sometimes called ternary trees. A leaf
is a node with degree 0 (like nodes C, D, and
E). All other nodes are called internal nodes.

A node’s height or depth in the tree is one
plus the number of its ancestors. The height
of the tree is the largest of the nodes’ heights.
The tree in Figure 1 has degree 2 (nodes A
and B have degree 2) and height 3 (nodes D
and E have height 3).

As you can see, tree terminology is a mishmash
of words pirated from genealogy (parent, child,
ancestor) and botany (branch, node, leaf).

Figure 2: Code that builds the binary tree shown in Figure 1.

var
root : TBinaryNode;

// Build a tree like the one in Figure 1.
procedure BuildFig1Tree;

var
child : TBinaryNode;

begin
// Create the root node A.
root := TBinaryNode.Create;

root.node_value := 'A';

// Create node B.
child := TBinaryNode.Create;

child.node_value := 'B';

root.left_child := child;

// Create node C.
child := TBinaryNode.Create;

child.node_value := 'C';

child.left_child := nil;
child.right_child := nil;
root.right_child := child;

// Create node D.
child := TBinaryNode.Create;

child.node_value := 'D';

child.left_child := nil;
child.right_child := nil;
root.left_child.left_child := child;

// Create node E.
child := TBinaryNode.Create;

child.node_value := 'E';

child.left_child := nil;
child.right_child := nil;
root.left_child.right_child := child;

end;

Algorithms

// Find the node with a particular value.
function TBigNode.FindNodeValue(target_value: String10):

TBigNode;

var
i : Integer;

child : TBigNode;

begin
// Assume we will not find the target.
Result := nil;
// See if this is the node we want.
if (node_value = target_value) then

// It is. Return this node.
Result := Self;

else
// It is not. Make the children search for it.
for i := 0 to children.Count - 1 do begin

child := children.Items[i];

// See if this child can find the target.
Result := child.FindNodeValue(target_value);

// If the child found it, we are done.
if (Result <> nil) then break;

end;
end;

Figure 3: This code searches a subtree for a target value.
Planting Trees
You can represent a tree in Delphi using a class to represent
the tree nodes. The class defines the node’s value and includes
references to the node’s children. For example, you could use
the following code to define a binary node class:

type
String10 = string[10];
TBinaryNode = class(TObject)

public
node_value : String10;

left_child, right_child : TBinaryNode;

end;

Using this class, a Delphi program can build a binary tree.
For example, the code shown in Figure 2 builds a tree similar
to the one shown in Figure 1.

To build a tree of larger degree, you can add more child refer-
ences to the node class. For example, you might define a node
for a ternary tree like this:

type
String10 = string[10];
TBinaryNode = class(TObject)

public
node_value : String10;

left_child, middle_child, right_child : TBinaryNode;

end;

For trees of higher degree, using separate child variables is
cumbersome. You can build a more flexible node class by
32 January 1999 Delphi Informant
using a linked list, TList, or some other expandable object to
store each node’s children:

type
String10 = string[10];
TBigNode = class(TObject)

public
node_value : String10;

children : TList;

end;

Tree Recursion
The beginning of this article defined a tree recursively as a
root node connected to zero or more subtrees. That recursive
nature translates into many useful tree operations. A program
can implement many tree operations by invoking a simple
method provided by the root node. That node can perform
the operation, or pass the request down to its children. They
in turn can handle the request, or pass it down to their chil-
dren. The request continues moving down through the tree
until a node handles it or every node has passed up the
chance and the task remains unhandled.

For example, suppose you have a large tree that uses the
TBigNode class described earlier. This class stores child
nodes using a TList object. The function FindNodeValue,
shown in Figure 3, searches the subtree rooted at a specific
node looking for a target value. It returns the node with
the indicated value.

FindNodeValue first determines whether the current node
has the target value. If so, it sets its Result value to this
node. If this node does not have the target value, the func-
tion examines each of the node’s children. For each child,
FindNodeValue recursively invokes the child’s FindNodeValue
function. That makes the child search its subtree for the tar-
get value. If any child successfully finds the target, the func-
tion stops looking.

// Free any children and the children list.
destructor TBigNode.Destroy;

var
i : Integer;

child : TBigNode;

begin
// Free the children.
for i := 0 to children.Count - 1 do begin

child := children.Items[i];

child.Free;

end;
// Free the children list.
children.Free;

inherited Destroy;

end;

Figure 5 (Top): By freeing the node’s children, the TBigNode’s
destructor recursively destroys an entire subtree.
Figure 6 (Bottom): The subroutine SetPosition recursively posi-
tions the node’s children and then centers the node over them.

const
BOX_WID = 40;

BOX_HGT = 16;

BOX_HGAP = 2;

BOX_VGAP = 6;

// Position the node and its descendants. Update start_x so
// it indicates the rightmost position used by the node and
// its descendants.
procedure TBigNode.SetPosition(var start_x : Integer;

start_y : Integer);

var
i, xmin : Integer;

child : TBigNode;

begin
// Set the node's top and bottom.
position.Top := start_y;

position.Bottom := start_y + BOX_HGT;

// Record the leftmost position used.
xmin := start_x;

// If there are no children, put the node here.
if (children.Count = 0) then

start_x := xmin + BOX_WID;

else
begin

// This is where the children will start.
start_y := start_y + BOX_HGT + BOX_VGAP;

// Position the children.
for i := 0 to children.Count - 1 do begin

// Position this child.
child := children.Items[i];

child.SetPosition(start_x, start_y);

// Add a little room before the next child.
start_x := start_x + BOX_HGAP;

end;
// Subtract the gap after the last child.
start_x := start_x - BOX_HGAP;

end;
// Center this node over its children.
position.Left := (xmin + start_x - BOX_WID) div 2;

position.Right := position.Left + BOX_WID;

end;

Algorithms

Figure 4: The example program BigTree lets you add, remove,
and search for nodes.
A Delphi program can search an entire tree for a target value
simply by invoking the root node’s FindNodeValue function:

target_node := root.FindNodeValue(txtValue.Text);

This is typical of many tree operations. A program can per-
form the operation for an entire tree by invoking a recursive
procedure defined by the tree’s root node.

Testing Trees
The example program BigTree, shown in Figure 4, lets you
manage a tree. Enter a value in the text box, select a node,
and click the Add button to add a new child beneath the
node you have selected. Select a node other than the root and
click the Remove button to remove the node and all of its
descendants from the tree. Enter a value and click the Find

button to make the program search for the value.

The BigTree program uses several recursive routines that work
much the same as the FindNodeValue function described earli-
er. One of the more important of these is the class destructor
shown in Figure 5. When it’s invoked, the destructor frees each
of the node’s children. The children free their children, which
free their children, and so forth, until every node in the subtree
is freed. This destructor makes it easy for a program to destroy
an entire tree. All it needs to do is free the root node, and the
rest of the tree is destroyed automatically.

The TBigNode class used by the program BigTree uses a TRect
variable named position to define the node’s placement on the
form. One of the more interesting parts of the class initializes
the positions for the nodes in the tree. It can then use the
positions to draw the tree.

The SetPosition procedure sets the position for a node.
This procedure, shown in Figure 6, recursively sets the
positions of the node’s children. It then centers the node
over its children’s subtrees.
33 January 1999 Delphi Informant
SetPosition takes as parameters the minimum X and Y coordi-
nates it’s allowed to use to position the node. As the procedure
moves through the tree, these values are updated so a node
always lies below its parent, and to the right of any previously
positioned subtrees at or below its depth in the tree. When it

Figure 7: A sorted binary tree.

Algorithms

Figure 8: The sorted binary tree from Figure 7 after the value 48
has been added.
finishes, SetPosition leaves the start_x parameter holding the
value of the maximum X coordinate it used to position its sub-
tree. This becomes an input for future calls to the procedure.

SetPosition procedure begins by setting the node’s top and
bottom position values. These are determined solely by the
position of the node’s parent. SetPosition then saves the
minimum X coordinate value it is allowed to use. If the
node has no children, the procedure adds the width of a
node, BOX_WID, to the minimum X coordinate to allow
room to draw its node.

If the node has children, the procedure recursively invokes each
child’s SetPosition procedure to position the subtree rooted at
the child. It increases the minimum Y coordinate the children
can use by BOX_VGAP, so there will be some vertical space
between the node and its children.

Each call to a child’s SetPosition procedure updates the vari-
able start_x to indicate the maximum X coordinate used to
position that child’s subtree. Between each child’s call,
SetPosition adds the amount BOX_HGAP to start_x to set the
minimum X value the next child can use to position itself.
This puts some space between the child subtrees.

When it finishes positioning the node’s children, SetPosition
subtracts the amount BOX_HGAP that it added to start_x
after it positioned the last child’s subtree. At this point, the
variable start_x holds the largest X coordinate used by the
last child’s subtree.

SetPosition finishes by centering its node over the minimum
and maximum X coordinate values used by all of the chil-
dren. You can see the result in Figure 4. For example, node F
is centered over the subtrees rooted at its children, I and J.
These subtrees both include a single node, so it’s easy to see
that node F is properly centered.
34 January 1999 Delphi Informant
Note that node B is not centered over its children, nodes D,
E, and F. Instead it’s centered over the subtrees rooted at
those children. These subtrees include X coordinates ranging
from the left edge of node D to the right edge of node J, at
the bottom of the F subtree.

The program BigTree uses similar recursive techniques to
draw the tree (each node recursively draws its subtree),
determine which node was clicked by the user (each node
recursively decides whether the clicked point lies within its
subtree), and delete a node (each node recursively searches
its subtree for the target node).

Another Sort of Tree
There are many different kinds of trees with different degrees
and different management policies. The B+tree, for example, is
a high degree tree that is commonly used by databases to store
table indexes. A simpler example is the sorted binary tree. In
this kind of tree, items are arranged so each node’s value is
greater than its left child’s and smaller than its right child’s.
Figure 7 shows a small sorted tree.

Adding a node to a sorted binary tree is not quite as easy as
adding one to an unsorted tree. To add a new value, the pro-
gram begins at the tree’s root. It compares the new node’s
value to the root’s value. If the new value is smaller, the pro-
gram continues to search for the node’s location by examin-
ing the root’s left child. If the new value is larger than the
root’s value, the program searches for the node’s location by
examining the root’s right child. The program continues
searching down the tree until the node it wants to examine is
not present. It then inserts the new node at that point.

For example, suppose you want to insert the value 48 in
the tree shown in Figure 7. The program first compares 48
to the root node’s value 56. Because 48 < 56, the program
searches the root’s left child. It then compares 48 to 13.

Algorithms

// Add a new node to this subtree.
procedure TSortNode.AddNode(new_value : Integer);

begin
// See which child to examine.
if (new_value < node_value) then

begin
// Add it to the left subtree.
if (left_child = nil) then

begin
// Create the new child here.
left_child := TSortNode.Create;

left_child.node_value := new_value;

end
else

begin
// Add it to the subtree.
left_child.AddNode(new_value);

end;
end

else
// Add it to the right subtree.
if (right_child = nil) then

begin
// Create the new child here.
right_child := TSortNode.Create;

right_child.node_value := new_value;

end
else

// Add it to the subtree.
right_child.AddNode(new_value);

end;

Figure 9: Code that inserts a value in a sorted binary tree.

// Return the subtree's preorder traversal.
function TSortNode.Preorder : string;
begin

Result := IntToStr(node_value);

if (left_child <> nil) then
Result := Result + ' ' + left_child.Preorder;

if (right_child <> nil) then
Result := Result + ' ' + right_child.Preorder;

end;

// Return the subtree's inorder traversal.
function TSortNode.Inorder : string;
begin

Result := '';

if (left_child <> nil) then
Result := Result + left_child.Inorder + ' ';

Result := Result + IntToStr(node_value);

if (right_child <> nil) then
Result := Result + ' ' + right_child.Inorder;

end;

// Return the subtree's postorder traversal.
function TSortNode.Postorder : string;
begin

Result := '';

if (left_child <> nil) then
Result := Result + left_child.Postorder + ' ';

if (right_child <> nil) then
Result := Result + right_child.Postorder + ' ';

Result := Result + IntToStr(node_value);

end;

Figure 10: Sorted node traversal code.
Because 48 > 13, the program examines that node’s right
child and compares 48 to 45. Because 48 > 45, the pro-
gram should next examine the node’s right child. In this
case there is no right child, so the program inserts the new
node as the right child of the node containing 45. The
result is the tree shown in Figure 8.

Like so many tree operations, you can write a node inser-
tion routine recursively. Each node’s AddNode procedure
compares its node value to the new value. It then invokes
the appropriate child node’s AddNode procedure. To add a
node to a tree, a program invokes AddNode for the tree’s
root. Figure 9 shows the AddNode procedure for the
TSortNode node class.

Climbing Trees
No discussion of trees would be complete without some
mention of tree traversal. Traversal is the process of visiting
all the nodes in the tree in a specific order. Four main tra-
versals are defined for trees: preorder, inorder, postorder,
and breadth-first.

In a preorder traversal, a node lists itself before listing its
children. In an inorder traversal, a node lists its left child,
then itself, then its right child. A postorder traversal lists a
node’s children before listing the node itself. Finally, a
breadth-first traversal lists all nodes at a given depth in the
tree before it lists those at the next level. For example, the
preorder, inorder, postorder, and breadth-first traversals of
the tree shown in Figure 8 are:

preorder: 56, 13, 45, 37, 48, 58, 80, 63, 60, 71, 95
35 January 1999 Delphi Informant
inorder: 13, 37, 45, 48, 56, 58, 60, 63, 71, 80, 95
postorder: 37, 48, 45, 13, 60, 71, 63, 95, 80, 58, 56
breadth-first: 56, 13, 58, 45, 80, 37, 48, 63, 95, 60, 71

Note that the inorder traversal of a sorted binary tree lists the
items in sorted order. This gives a simple method for sorting
a list of items: Add them one at a time to a sorted binary tree,
then produce the tree’s inorder traversal.

Figure 10 shows code used by the TSortNode class to pro-
duce traversals for a node’s subtree. They are generally similar
in structure. Each routine adds the node’s value to a string,
together with the traversals for the node’s children. The main
difference between these routines is the order in which they
combine the node’s value with the child traversals.

Breadth-first traversals are a little different from the others.
When it visits a node, the traversal routine cannot immedi-
ately follow the child nodes down into the tree like the other
functions do. It must visit other nodes at the current depth in
the tree first.

Figure 11 shows code that performs a breadth-first traversal.
This code uses a TList object to build a list of nodes it must
output. While this list isn’t empty, the code removes the first
node from the list and adds its value to the traversal. It then
adds the node’s children to the list for later output.

All the nodes at the same level in the tree are added one after
each other in the list, so they are later removed together
before any of their children are removed. That produces the

36 January 1999 Delphi Informant

Algorithms

// Return the subtree's breadth-first traversal.
function TSortNode.BreadthFirst : string;
var

nodes : TList;

node : TSortNode;

begin
Result := '';

// Create the node list.
nodes := TList.Create;

// Put the root node on the list of nodes.
nodes.Add(root);

// While the list of nodes is not empty...
while (nodes.Count > 0) do begin

// Output the first item and remove it from the list.
node := nodes.Items[0];

nodes.Delete(0);

Result := Result + IntToStr(node.node_value) + ' ';

// Add the node's children to the stack.
if (node.left_child <> nil) then

nodes.Add(node.left_child);

if (node.right_child <> nil) then
nodes.Add(node.right_child);

end;
// Destroy the list of nodes.
nodes.Free;

end;

Figure 11: Code to perform a breadth-first traversal.

Figure 12: The example program SortTree displaying a depth-
first traversal.
breadth-first traversal. Note that unlike the other traversal
routines, this one is not recursive.

The SortTree example program shown in Figure 12 lets
you build a sorted binary tree. Enter a number in the text
box and click the Add button to add a new node to the
tree. If you click on a radio button, the program uses the
code shown in Figures 10 and 11 to display the appropri-
ate traversal for the tree.

Conclusion
This article hardly scratches the surface of the things you
can do with trees and other dynamic data structures. You
can quickly add, remove, and rearrange the items in a tree
to represent new relationships. With a little extra work, you
can create more exotic kinds of trees, such as B-trees,
B+trees, and AVL trees. Using data structures like these,
you can represent and manipulate data with complex hier-
archical relationships efficiently. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901RS.

Rod’s book Ready-to-Run Delphi 3.0 Algorithms [John Wiley & Sons, 1998]
has lots more to say about trees and other dynamic data structures. For more
information, visit http://www.delphi-helper.com/da.htm. You can contact Rod
via e-mail at RodStephens@delphi-helper.com.

http://www.delphi-helper.com/da.htm

37 January 1999 Delphi Informant

Delphi Reports
Delphi 2, 3, 4 / QuickReport

By Keith Wood
Generic Reports
Using Polymorphism to Create Reusable Reports

Many applications require reporting capabilities to describe and distill
the data they manipulate. To make these reports more useful, we often

need to supply parameters to control various aspects of the reports, e.g. limit
the range of records selected, control breaks and subtotaling, set the sort
order, etc. However, we don’t want to create a separate form for each report
to retrieve these values from the user — especially when the same sort of
values are typically required for several reports. It would be better if we
could have a common way of eliciting these details, then handling them in a
generic way.
This article describes an approach to gathering
report parameters and manipulating them
through the magic of polymorphism, allowing
each report to do its own thing with a standard
call and set of parameters. The reporting tool
used here is QuickReport, but the technique
could be applied to any other tool as well.

Report Parameters
We want a single form to ask for all possible
parameters from the user for all our reports.
Having all the processing in one form allows
us to reuse the code effectively because many
reports share parameters. It also reduces
Figure 1: The parameters form at design time,
showing all possible panels. Alternating panels
are colored here to highlight their presence.
maintenance costs, since we only have to
make changes in one place.

For our example, we have several reports run-
ning against the DBDemos database that
comes with Delphi. These are divided into
two main groups: those for customers and
those for orders. The parameters we might
want to ask for are a customer, state, an
order, and a date or date range.

We must then specify which of the possible
parameters are available for use within each
report. Because there can be a combination
of any or all of these, we use an enumerated
type, and associate a set of these values —
Params — with the report:

type
// Possible parameters to be requested

from user.
TReportParameter = (rpCustomer, rpState,

rpOrder, rpDate,

rpDateRange);

TReportParameters = set of TReportParameter;

Each set of parameters resides on its own panel
on the form and corresponds to one of the
enumerated values in the set (see Figure 1).

procedure LoadSortBy(sSortBy: string);
var

slsSort: TStringList;

i: Integer;

begin
slsSort := TStringList.Create;

try
// Load sort options from array; already delimited by
// line feeds so Text property loads into separate
// lines in string list.
slsSort.Text := sSortBy;

// Then separate display and field values.
for i := 0 to slsSort.Count - 1 do

cmbSortBy.Items.AddObject(slsSort.Names[i],

TString.Create(slsSort.Values[slsSort.Names[i]]));

pnlSortBy.Visible := (cmbSortBy.Items.Count > 1);

cmbSortBy.ItemIndex := 0;

finally
slsSort.Free;

end;
end;

Figure 2: Loading the sorting options.

type
TReportRec = record

// Menu entry under which to appear, format:
// 'upper level|lower level.'
MenuEntry: string;
// Name of QuickReport class.
Report: string;
// Title of the report.
Title: string;
// Set of user parameters available for entry.
Params: TReportParameters;

// Set of parameters that are required;
// should be subset of above.
Required: TReportParameters;

// Possible orderings, format:
// '<display>=<field(s)>' + sSep + ...
SortBy: string;
// Filter to be applied to WHERE clause of query.
Filter: string;

end;

const
sSep = #13#10; // Separator for sort by options.
iNumReports = 7; // Number of entries in array below.
// Records containing details of each report. Place in
// order of appearance on menu.
recReports: array [1..iNumReports] of TReportRec =

((MenuEntry: '&Customers|&List'; Report: 'TqrfReport1';

Title: 'Customer List'; Params: [rpCustomer, rpState];

Required: []; SortBy: 'Customer No=CustNo' + sSep +

'Company=Company' + sSep + 'State=State, Company' +

sSep + 'Zip Code=Zip, Company'), (MenuEntry:

'&Customers|Last &Invoiced'; Report: 'TqrfReport1';

Title: 'Customer Last Invoiced'; Params: [rpState,

rpDate]; Required: [rpDate]; SortBy:

'Customer No=CustNo' + sSep + 'Company=Company' +

sSep + 'Last Invoiced Date=LastInvoiceDate desc' +

sSep + 'State=State, Company' + sSep +

'Zip Code=Zip, Company'), (MenuEntry:

'&Orders|&List by Customer'; Report: 'TqrfReport2';

Title: 'Orders by Customer'; Params: [rpCustomer];

Required: [rpCustomer]; SortBy: 'Order No=OrderNo' +

sSep + 'Sale Date=SaleDate, OrderNo' + sSep +

'Total Amount=ItemsTotal, OrderNo'),

...

Figure 3: Defining the reports to the parameter module.

Delphi Reports
These panels provide us with an easy way to hide items that
aren’t required for a particular report. We just set the Visible
property of the panel based on the presence of the appropriate
enumerated value:

pnlDateRange.Visible := (rpDateRange in Params);

Setting the Align property to alTop for these panels ensures
they reposition themselves automatically as they appear or
disappear. Setting the correct TabOrder enables a consistent
flow through the fields regardless of which are present. We
can then set the form to the right size by using the position
and dimensions of the final panel. This last panel is always
displayed because it contains the OK and Cancel buttons used
to initiate the report or close the form, as well as an option to
preview the report or send it directly to the printer.

Even though we display the parameter panels to the user,
some reports may require a value to be entered, while others
can accept a blank value. To cater to this, we associate
Required, another set of the aforementioned enumerated val-
ues, with each report. The elements in this set specify which
parameters must be non-blank, i.e. which are required. This
set should be a subset of those available to the report.

Sorting and Filtering
Another common feature among reports is the ability to spec-
ify an ordering for the printed records. This is achieved by
letting the user pick from a list of possible sequences. Each
report may have its own set of orderings, so it’s specified with
that report definition.

To allow a descriptive field to be displayed to the user while
having the actual field names behind the scenes, we make use
of a string list’s ability to associate an object with each item.
Unfortunately, a string is not an object and cannot be stored
directly. To easily overcome this limitation, we can wrap it in
an object, TString, before loading the list:

type
// Wrapper around a string.
TString = class(TObject)
public

Value: string;
constructor Create(sValue: string);

end;

Preparing the sorting list as if it were an .INI file facilitates load-
ing the list of sort options. Each element consists of the descrip-
tive text, followed by an equals sign (=), then the fields to be
used. Elements are separated by a carriage return and line feed.
Upon loading this into a string list via its Text property, we can
access the two parts of the elements with the Names and Values
properties. These are then transferred into the combo box that
appears on the screen as the Items and Objects (see Figure 2).

Applying a filter to a report allows us to restrict the records
displayed to those that are appropriate to the report selected.
We could have exactly the same report behind two menu
38 January 1999 Delphi Informant
items with the only difference being in the filter. This value
appears in each report’s definition as a string that’s added to
the WHERE clause of the report’s query.

Delphi Reports

type
TqrfReport3 = class(TqrfBase)
protected

procedure SetParams(slsParams: TStrings); override;
end;

// Set up query from parameters.
procedure TqrfReport3.SetParams(slsParams: TStrings);

begin
inherited SetParams(slsParams);

with qryReport do begin
// Set order number.
ParamByName('OrderNo').AsInteger :=

StrToInt(slsParams.Values[sOrder]);

Open;

end;
qryItems.Open;

end;

Figure 5: Overriding the SetParams method to process the para-
meters specific to this report.
Report Definitions
To manage all the details pertaining to a particular report, we
define a record structure and initialize an array of these records
with the appropriate values (see Figure 3). Note that the syntax
for initializing a record is a field name, followed by a colon (:),
then the field’s value. Fields are separated by semi-colons (;)
and must be specified in the same order as in the declaration.
Those fields at the end of the record that don’t have values dif-

ferent from the
default can be
omitted from
the list. Figure 4
shows the report
parameters
screen in action
for the second
report defined
in Figure 3.

Adding a new report is then a simple matter of increment-
ing the report counter, iNumReports, and inserting the
report’s definition into the array declaration. The additional
fields in the report definition allow us to specify the menu
entry that invokes the report, its title (for display on the
parameters form and on the report itself), and the name of
the class that implements the report.

To pass the parameter values into the reports themselves,
we need a transfer mechanism that works for a variety of
data types in a generic way. Typically, the parameters are of
three basic types: numbers, strings, and dates. Each of these
can easily be converted to and from strings, suggesting that
a string list is the ideal way to pass them around. A string
list has the advantage of being able to handle a variable
number of parameters without trouble. Furthermore, by
using its Values property, a string list can be accessed for
specific parameter values by name.

Polymorphic Reports
To enable all the reports to be handled in a common way, we
make use of the polymorphic abilities of Delphi objects. This
is the process of invoking a single method, but having each
report deal with the call in its unique way.

All our reports have several features in common: a report
title, a date-time stamp, and page numbers. We can place
these into a base report, along with some default behavior,
then inherit them into all our application reports. This helps
us maintain a standard look and feel for the reports, and eases
the maintenance of this appearance by localizing the changes
to the base form.

Each report needs to handle the parameters passed to it in
its special way. To allow this to happen, we define a
method, SetParams, in the base report, and make it virtual.
Then, in any report derived from the base one, we can over-
ride the behavior of this method to perform something spe-
cific to that report. The method is declared in the protected

Figure 4: The report parameters form for
the Last Invoiced report.
39 January 1999 Delphi Informant
section of the class to make it available to those subclasses,
but not to the world at large:

type
TqrfBase = class(TForm)
protected

procedure SetParams(slsParams: TStrings); virtual;

Because there is one parameter — the title — that is con-
sistent across all reports, we set it as the only action in
the SetParams method in the base report. Having some
code in the method also means we don’t need to label
the method as abstract. Thus, any subclass of the base
report can use this implementation if it so desires, with-
out any further work.

All our other reports must derive from this base report,
enabling them to inherit the definitions and default behavior
of the latter. In these subclassed reports, we can change the
behavior of the SetParams method by overriding the defini-
tion in the base report (see Figure 5). We then code the new
functionality required. The code from the ancestor class can
still be accessed through the use of the inherited keyword.

The SetSelection method in the base report, which loads a
description of the selected parameters and sort option, isn’t
declared as virtual because its implementation doesn’t change
for each report. By declaring it in the base report, it’s avail-
able to any derived report through normal inheritance.

Invoking the Report
Clicking the OK button on the report parameters screen
validates the parameters selected based on the Required
field for that report. If all is well, it then builds up the
string list that contains the parameters. Any non-blank
selections are added to the list, as is the title of the report,
and any filter and sort order applicable to that report. We
then create an instance of the nominated report and ask it
to process these parameters. Finally, the report is pre-
viewed, or printed as requested.

Delphi Reports

// Create the report, pass parameters to it, and show it.
class procedure TqrfBase.ShowReport(sReport,sTitle:

string;
slsParams: TStrings; bPreview: Boolean);

var
clsReport: TqrfBaseClass;

begin
// Find the class with this name. Each such class must be
// registered with Delphi, e.g.
// initialization
// RegisterClass(TqrfReport1);
clsReport := TqrfBaseClass(FindClass(sReport));

// Create a new report from this class.
with clsReport.Create(Application) do

try
// Pass the selected parameters.
SetParams(slsParams);

// And preview or print the report.
if bPreview then

qrpQuickReport.Preview

else
qrpQuickReport.Print;

finally
Free;

end;
end;

Figure 6: Creating the report form and viewing or printing it.

// Construct a menu for the reports known to this unit and
// attach underneath the specified menu item.
class procedure TfrmRepParams.BuildMenu(

mniParent: TMenuItem);

var
i, iPos: Integer;

mniAddTo, mniItem: TMenuItem;

sCaption: string;

// Find upper-level menu, or create it if necessary.
function FindMenuItem(mniCurrent: TMenuItem;

sCaption: string): TMenuItem;
var

i: Integer;

begin
// Check current menu items.
for i := 0 to mniCurrent.Count - 1 do

if mniCurrent.Items[i].Caption = sCaption then
begin

Result := mniCurrent.Items[i];

Exit;

end;
// Not there; create a new item.
Result := TMenuItem.Create(mniCurrent);

try
Result.Caption := sCaption;

mniCurrent.Add(Result);

except
Result.Free;

raise;
end;

end;

begin
// Process full array of reports.
for i := 1 to iNumReports do

with recReports[i] do begin
// Locate parent menu (if applicable).
mniAddTo := mniParent;

sCaption := MenuEntry;

iPos := Pos('|', sCaption);

// There may be several levels to menu.
while iPos > 0 do begin

mniAddTo := FindMenuItem(

mniAddTo, Copy(sCaption, 1, iPos-1));

sCaption := Copy(sCaption, iPos + 1,

Length(sCaption) - iPos);

iPos := Pos('|', sCaption);

end;
// Add new menu item.
mniItem := TMenuItem.Create(mniAddTo);

try
with mniItem do begin

Caption := sCaption;

Tag := i; // Index into table here.
// Return to this unit to process.
OnClick := ReportMenuClick;

end;
mniAddTo.Add(mniItem);

except
mniItem.Free;

raise;
end;

end;
end;

Figure 7: Building the reports menu.
To create the correct report (recalling that the parameters
module doesn’t want to know about all the possible descen-
dants of the base report), we invoke a class method on that
base report that’s always available (see Figure 6). To this, we
pass the name of the required report form as a string — the
Report field in each definition. The application can locate the
appropriate class from this name, and build us an instance of
it to work with.

For this FindClass function to work, however, it’s necessary
to register the classes with the application beforehand. This is
achieved through the RegisterClass procedure that’s called
from each child report unit in its initialization section:

initialization
// Tell application about this form.
RegisterClass(TqrfReport3);

This ensures the class is registered before it will be used.

De-coupling the Reports
De-coupling is the process of removing links between class-
es and/or units. It attempts to restrict the knowledge neces-
sary for one object to interact with another. By doing this,
we limit the communication between the two, thereby less-
ening the possibility of breaking those links by changing
one of the objects.

In our case, we move all the report knowledge into the
report parameters module, but we still want to access the
reports from the menu. For this, we provide a single
method in the reports module that can be called from the
main form to construct the menu. All the main form
needs to do is call this single method and pass across a ref-
erence to the menu item under which all the reports are to
40 January 1999 Delphi Informant
appear. This would be invoked in the OnCreate event of
the main form, as shown here:

// Ask the report unit to build the reports menu.
procedure TfrmGenReports.FormCreate(Sender: TObject);

begin
TfrmRepParams.BuildMenu(mniReports);

end;

Delphi Reports
That is the entire extent of the interaction with the reports
module from the rest of the system. There’s not much that
can change here! The BuildMenu method is declared as a
class method of the parameters form. This means it belongs
to the class as a whole, and not to any particular instance of
the class. It also means we can call the method without hav-
ing any instances of the class to work with. This is useful,
given that we create an instance of the form in response to a
selection from the menu. As you can see, we refer to the class
itself when invoking the method.

Within the menu-building method, we loop through the
array of reports and build a menu item for each one
(see Figure 7). These are attached to the menu item passed in
by the main form, and down through other intermediate
levels, as specified in the MenuEntry value for each report.
Different levels are separated by a pipe (|) and should
include ampersands (&) in the appropriate spots if menu
accelerators are required. The result of clicking on one of
these menu items is to invoke another method that also
resides in the reports form as a class method.

Because all the report menu items come back to this one
method, we need to be able to identify which one was
requested. The easiest way to do this is to use the Tag proper-
ty of the menu items, and set this equal to the index into the
array of report details. This way, there is no hard-coding of
Tag values, and we can safely add new reports by simply
inserting them into the array.

Within the response method, we check that the Tag value is a
valid index into the array. If it is, we create an instance of the
report parameters form tailored for the nominated report.
The rest of the system doesn’t know — and has no need to
know — what is happening within the reports menu.

Demonstration
The demonstration project that accompanies this article
(available for download; see end of article for details) includes
41 January 1999 Delphi Informant
a main form with a menu, the report parameters form, the
base report, and three subclassed reports for actual use. It is
built around the DBDemos database that comes with Delphi,
and illustrates the techniques described in this article.

Pick a report from the menu and fill in the required parame-
ters. Choose whether to preview it, or send it straight to the
printer and watch the report appear.

As mentioned earlier, QuickReport is used as the reporting
tool in this demonstration, but with minor modifications the
techniques could be applied to other tools.

Conclusion
Through the use of object-oriented techniques and code
reuse, we have produced a generalized form for requesting
report parameters from the user, and applying them to
each of the reports in the system. This should reduce
maintenance costs since we only have to make the changes
in one place.

Furthermore, we have de-coupled the reporting subsystem
from the rest of the application — allowing it to be treated
as a black box — with only a single call required to initialize
it. This isolates the reports from the rest of the system, and
severely limits the effects of any changes in either area. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Occasionally
working with Delphi, he has enjoyed exploring it since it first appeared. You can
reach him via e-mail at kwood@ccsc.com.

42 January 1999 Delphi Informant

At Your Fingertips
Delphi / Tips

By Robert Vivrette
No doubt many of you are familiar with the BitBlt Windows API function. For
those of you who aren’t, it stands for “Bit Block Transfer” and is simply one

of the functions Windows uses to paint images on the screen. Its close relative is
the StretchBlt function, which performs a similar task, but allows you to stretch
or shrink the image you are drawing. Delphi wraps each of these commands in
far simpler-to-use mechanisms: the Draw and StretchDraw methods.

A Quick Spin on NT
And Other Useful Tips
In addition to a few other relatives (including
MaskBlt for masking operations, and PatBlt
for painting an area with a pattern), Windows
also includes a little-known function called
PlgBlt. Part of the reason why it isn’t in many
peoples’ graphics vocabulary is that it’s cur-
rently an NT-only function (as is MaskBlt).
This means that users of Windows 3.1/95/98
are out of luck; it simply won’t work.

However, if you use Windows NT and need
to do some fancy footwork with graphics,
you’ll find PlgBlt to be an incredibly power-
ful tool. In a nutshell, PlgBlt performs simi-
larly to StretchBlt, except that the destination
of the painting doesn’t need to be rectilinear
(hence the “Plg” in its name, which stands
for parallelogram). All PlgBlt needs to per-
form this magic is three points on a canvas.

Now wait a minute, you say. Why only three
points? Well, as it turns out, it really does use
four points to make this parallelogram.
However, it doesn’t trust you to generate the
fourth point. If you were to place three dots on
a piece of paper in a specific order, there would
be only one spot where you could place the
fourth and still have a parallelogram. Note here
that the sequence of those first three points is
important in making this determination.

As a demonstration on the use of PlgBlt, I
wrote a quick little application that allows the
user to spin a bitmap in real-time. As you can
see from the code in Listing One (on page 45),
there is no rocket science here, but the capabil-
ity PlgBlt adds is undeniably cool. (This code
is available for download; see end of article for
details.) Even if you are using a non-NT devel-
opment environment, there are a couple of
interesting techniques you may find useful.

As you can see, there are only four methods
in use: FormCreate, FormDestroy, FormPaint,
and FormMouseMove. Our objective for this
demonstration is to place a TImage on a
form, add a graphic to it, and when the appli-
cation is run, allow the user to grab the cor-
ners and rotate the image. We’ll start by creat-
ing a new form, placing a TImage in the cen-
ter, and loading the TImage with a bitmap.

The first thing that happens is the FormCreate.
Here we do a few setup-type things. There’s a
TBitmap we declared earlier that we’re going to
use to prevent flicker when we rotate the image
(more on that a little later). In FormCreate,
however, we must set up that bitmap to be the
width and height of the form.

Next, we set up an array of points. There are
four points in this array (numbered 0 to 3);
we’ll be using them for two purposes: The first
is to pass the array into the PlgBlt command
(remember, it will ignore the last point); the
second purpose is to provide locations for
drawing handles on the image (so we can see
where to grab when rotating it). All I do in
FormCreate is place the points in their proper
locations — one at each corner of the image.

Figure 1 (Top): The example program in its original state.
Figure 2 (Bottom): The example program when rotated.

At Your Fingertips
Next, we calculate a MidPt. This TPoint variable will hold the
rotational center of the image, and is an average of the four
corners of the image. The next variable defined is R, which
will hold the distance (radius) from one corner of the image to
the MidPt. This is used in the rotation calculations later on.
Next, we fill an array of four real numbers (doubles actually)
with the initial angle that each corner of the image has in rela-
tion to the midpoint. This is also used in our rotation calcula-
tions. Lastly, we set the OverHandle variable to a known value.
This variable is used to track the handle number that the
mouse is over. When it is -1, it’s not over a handle.

The FormDestroy method simply cleans up a little by deleting
the background bitmap we created in the FormCreate.

FormPaint is where PlgBlt comes into play. Earlier, I noted we
were going to use the background bitmap to avoid flicker. The
way this is done is that all drawing is done on this bitmap
first. When it’s all done, the entire contents are plastered on
the form’s canvas with a single call to its Draw method. Flicker
occurs when you have multiple (and conflicting) draw actions
occurring in the same space. Because the background bitmap
is an in-memory TBitmap, we can draw on it all we want and
the user won’t see it until it is transferred to the form. Because
there’s a single drawing event, there is no flicker.

Back to FormPaint. First, we clear the background bitmap using
FillRect. Then we do our call to PlgBlt. The parameters it expects
are as follows (partially excerpted from the Win32 API Help):

hdcDest. This identifies the destination device context. This is
the handle to the destination canvas (BkBmp.Canvas.Handle).
lpPoint. This is our array of points used to identify the first
three corners of the destination parallelogram. The upper-
left corner of the source rectangle is mapped to the first
point in this array, the upper-right corner to the second
point in this array, and the lower-left corner to the third
point. As I mentioned earlier, the lower-right corner is cal-
culated for you. It doesn’t hurt that we pass in all four
points, the PlgBlt function simply ignores the last one.
hdcSrc. This identifies the source device context. This is
the handle to the Images canvas (Img.Canvas.Handle).
nXSrc. This specifies the x-coordinate of the upper-left
corner of the source rectangle.
nYSrc. This specifies the y-coordinate of the upper-left
corner of the source rectangle.
nWidth. This specifies the width of the source rectangle.
nHeight. This specifies the height of the source rectangle.

The last three parameters (hbmMask, xMask, and yMask) have
to do with an optional bitmap that can be used to mask colors.
We aren’t using these in this example, so we set them all to zero.
If the call to PlgBlt is successful, we draw the four handles
on the image, using the same array of points we passed into
PlgBlt. If the call is not successful, it generally is a sign that
we are not running on an NT platform, so we make an
appropriate mention using TextOut. After this is done, the
background bitmap is transferred all at once to the form,
using its Draw method.
43 January 1999 Delphi Informant
The last method in this demonstration, FormMouseMove, is
the mouse management for working with the handles on the
corners of the image. When the mouse is moved, we first
look to see if the left mouse button is down. If so, we also
check to make sure the OverHandle variable contains the
number of a handle that has been grabbed. Assuming this is
also true, we determine the angle from where the mouse is
to the mid-point of the image (calculated earlier). We use
this angle to re-calculate the locations of each of the four
handles on the image.

If the left mouse button isn’t down, we make sure the
OverHandle variable is reset, then use PtInRect to determine if
the mouse is over any of the four handles. If so, we store that
handle’s number in OverHandle, and switch the cursor to a
hand pointer.

That’s pretty much it for this demonstration. Notice that
there is no code to rotate the image as such (the PlgBlt

At Your Fingertips
routine handles all that for us). When you run the applica-
tion, you’ll see something like what is shown in Figure 1.

Grabbing one of the handles and spinning it a little counter-
clockwise would result in what is shown in Figure 2.

These pictures really don’t do the demonstration much jus-
tice. Suffice it to say that the rotation is perfectly smooth and
very fast, thanks in part to the amazing power of PlgBlt.

System Error Text Messages
How many times have you seen a reference similar to this in
the Windows API Help? “If the function succeeds, the return
value is nonzero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.”

Apparently, while programmers around the world were
sleeping, Microsoft decided it was getting too difficult
(and inefficient) to return all possible error values as the
result of most function calls. Therefore, they reworked the
idea of obtaining error values through a separate API func-
tion, namely GetLastError. Many API functions, however,
retain some backward compatibility, and still return the
error results themselves (in addition to setting the value
GetLastError uses).

However, we need to keep up with the times; the function
return values for errors we’ve come to rely upon will likely
disappear. A good example of this is the LoadLibrary com-
mand. When successful, it returns the handle of the specified
library (DLL or EXE). When it fails, it used to return a small
integer value (between 0 and 32). Now, however, if it fails, it
simply returns a zero (NULL), and requires that you go to
GetLastError to get the real error result.

Obviously, this is a much more efficient solution to obtaining
error values. After all, mixing error values with success values
as the return result of a function requires you know which
ones are errors and which ones are “good.”

So everything’s wonderful now, right? Well — no! If you look
at GetLastError, it’s still simply returning a numeric result that
must be interpreted by your program. What if you want to
get a text message of what the error is? Microsoft does include
another function, named FormatMessage, that can take the
result of GetLastError and make an intelligible error message
out of it. The problem is that FormatMessage isn’t the easiest
function to use.

Fortunately, Delphi comes to the rescue again. In Delphi’s
SysUtils unit, there’s a very useful wrapper function for
FormatMessage named SysErrorMessage. Whenever you get an
error result from an API function, you simply pass
GetLastError into a call to SysErrorMessage. The result is a
string representation of the error. For example, this statement:

ShowMessage(SysErrorMessage(GetLastError));
44 January 1999 Delphi Informant
will display the result of SysErrorMessage in a ShowMessage
dialog box. Pretty handy! Do keep in mind, however, that the
value stored in GetLastError is temporary. If you call a func-
tion and get an error result, make sure you call GetLastError
immediately. Its value may change if you call other API func-
tions before you retrieve its value.

Note also that you can use SetLastError to set your own error
values. This is normally done for functions stored in DLLs.
You can learn more about this in Win32 API Help under the
section on SetLastError.

String-to-Integer Conversion
One of the more frequently used functions in a program-
mer’s repertoire is StrToInt. It simply converts a string value
into an integer value. Programmers often use this to extract
a numeric value (from an edit box, for example). A pro-
gram may ask for the number of airplanes sold during a
particular month; the user enters the value in the edit box,
and the programmer takes that value and converts it to an
integer for internal processing. However, StrToInt has an
annoying quality. If the function cannot convert the value
to a valid integer (perhaps there are non-numeric characters
in the string), it generates an exception, such as “1234b is
not a valid integer value.” In some cases, this may be a
desired effect, but you often don’t want to generate an
exception. You could, of course, turn off run-time excep-
tions, but that can hide exceptions generated in other areas.

Do you wish there was a function that would do this conver-
sion and not whine about invalid data? Wish no longer ...

The StrToIntDef function is an extension of StrToInt that
allows you to specify a default value in the event the string
cannot be converted to a valid integer value. All you do is
specify the string to convert, and as a second parameter,
provide the default value you want it to send back in the
case of a conversion error. The main advantage is that this
is entirely silent, so you can tell you had a conversion error
(the default value was returned) without disrupting the
flow of the application.

Remember, both StrToInt and StrToIntDef are in the SysUtils
unit, so you will need to include it in your uses clause. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\JAN\DI9901RV.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

At Your Fingertips
Begin Listing One — PlgBltU.pas
unit PlgBltU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Math;

type
TForm1 = class(TForm)

Img: TImage;

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure FormPaint(Sender: TObject);

procedure FormMouseMove(Sender: TObject;

Shift: TShiftState; X,Y: Integer);

private
P : array[0..3] of TPoint;

OAng : array[0..3] of Double;

OverHandle : Integer;

BkBmp : TBitmap;

MidPt : TPoint;

Ang,R : Double;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);

var
Pt : Integer;

begin
BkBmp := TBitmap.Create;

BkBmp.Width := Width;

BkBmp.Height := Height;

P[0] := Img.BoundsRect.TopLeft;

P[3] := Img.BoundsRect.BottomRight;

P[1] := P[0]; Inc(P[1].X,Img.Width);

P[2] := P[3]; Dec(P[2].X,Img.Width);

with Img do
MidPt := Point(Left+Width div 2,Top + Height div 2);

with Img do
R := SqRt(Sqr(Width div 2) + Sqr(Height div 2));

for Pt := 0 to 3 do
with P[Pt] do

OAng[Pt]:= ArcTan2(Y-MidPt.Y,X-MidPt.X)+Pi;

OverHandle := -1;

end;

procedure TForm1.FormDestroy(Sender: TObject);

begin
BkBmp.Free;

end;

procedure TForm1.FormPaint(Sender: TObject);

var
Pt : Integer;

begin
with BkBmp.Canvas do begin

Brush.Color := clBtnFace;

FillRect(ClipRect);

if PlgBlt(Handle,P,Img.Canvas.Handle,0,0,

Img.Width,Img.Height,0,0,0) then
begin

Brush.Color := clBlack;

for Pt := 0 to 3 do
with P[Pt] do

FillRect(Rect(X-3,Y-3,X+3,Y+3));

end
else

TextOut(0,0,'PlgBlt supported only on WinNT');

end;
Canvas.Draw(0,0,BkBmp);

end;
45 January 1999 Delphi Informant
procedure TForm1.FormMouseMove(Sender: TObject;

Shift: TShiftState; X,Y: Integer);

var
Pt : Integer;

TmpRect : TRect;

begin
if ssLeft in Shift then

begin
if OverHandle = -1 then

Exit;

Ang := ArcTan2(Y-MidPt.Y,X-MidPt.X) -

OAng[OverHandle]+Pi;

for Pt := 0 to 3 do
P[Pt] := Point(MidPt.X-Round(R*Cos(Ang+OAng[Pt])),

MidPt.Y-Round(R*Sin(Ang+OAng[Pt])));

Paint;

end
else

begin
OverHandle := -1;

for Pt := 0 to 3 do begin
with P[Pt] do

TmpRect := Rect(X-3,Y-3,X+3,Y+3);

if PtInRect(TmpRect,Point(X,Y)) then
begin

Cursor := crHandPoint;

OverHandle := Pt;

end;
end;
if OverHandle = -1 then

Cursor := crDefault;

end;
end;

end.

End Listing One

46 January 1999 Delphi Informant

New & Used

By Ron Loewy

Figure 1: The
TSQLBuilder
An Affordable Visual Query Tool for Delphi Applications

Unlike many Delphi developers that spend time writing database applica-
tions using the Delphi data access and data control components, my brush

with the BDE and Delphi database programming was limited to a small project
I developed three years ago with the help of Woll2Woll’s InfoPower component
set. My new project required the ability to import data from different databases
into a help-authoring tool. The design of the import application made it clear
that we’d need to provide end users with the ability to define database queries
and specify how they intend to bind the information into the generated help
topics. Because we don’t know the source of the data, the users must create
their own SQL queries to select the data.
My experience is that some programmers
prefer to use visual design tools for their
SQL queries, unless the query builder they
use is incapable of a SQL feature, or they
are the authors of a SQL book available in
the library of the computer science depart-
ment in a university near you. It was clear
we needed to look for a visual query
builder to include with our data import
application. The first tool I checked,
TSQLBuilder from Conclusion Software,
proved to be a capable contender. When it
took less than 20 minutes to roughly inte-
grate it with my application, I abandoned
the search for other options.
 SQL Builder dialog box in action.
TSQLBuilder arrives as a collection of Delphi
units and DFM files that you install into
Delphi’s component library by compiling the
SQLBuilder.DPK file provided with the
product. Once you install the package, two
components are added to the Samples page
of the Component palette. TBtnEdit is used
internally by the SQL Builder forms and
TSQLBuilder, the visual query builder.

TSQLBuilder is designed to work like a file
open or save dialog box; all you need to do
to activate it from your application is call its
Execute method. The resulting SQL query is
available in the component’s SQL property.
From there, it’s simple to obtain the SQL
source, feed it to your TQuery component,
and continue with your application’s logic.

While my needs were limited to the ability to
define queries visually, you can do more with
TSQLBuilder. The ability to print the query
results is built into the component for simple
ad hoc reports. You can set the DefaultPrinting
property to False and handle all the printing
chores by writing code for the OnPrintHeader,
OnPrintRow, and OnPrintFooter events.

If your users need to reload the query they
were defining from persistent storage, the
component provides LoadFromStream and

Figure 2: The SELECT statement created from the query shown
in Figure 1, and the resulting answer set.

New & Used
SaveToStream functions. I combined the SQL Builder’s stream
in the applications database definition file, but you can save
queries to BLOb fields, file streams, memory streams, or any
other stream your application creates.

When the user activates the SQL Builder, he or she is present-
ed with a form for defining the tables and fields of the query
(see Figure 1). A toolbar provides access to functions such as
query load and save, a table selection wizard, adding and
removing a table, clearing all tables, a table join editor, adding
a SQL-defined field, selection of the query type (select,
update, delete), and the ability to switch between the visual
query builder, a SQL editor, and an instant results table.

Once a table is added, it appears in the top part of the query
builder form. The user can double-click on any field to add it
to the query. Every added field appears in the field grid at the
bottom of the form. The user can define parameters such as
sort type, selection, grouping, and visibility for each field. If
the user adds another table to the query, the query builder
tries to create a join based on field names. The user can fine-
tune the join operation with the Edit Join button, or create
new links by dragging and dropping fields from one table to
another. The results of a query are shown in Figure 2.

Using TSQLBuilder is so simple that most developers will
be able to take advantage of the tool by playing with the
sample project provided. The sample project shows how to
use the TSQLBuilder component, and combine the results
with a TQuery. It also provides a sample of using a database
to store different queries and load them using the
LoadFromStream method.

The product comes with Microsoft Write files containing end-
user information, a programmer’s guide, and other useful docu-
mentation. Every property, event, and method of the component
is described in the programmer’s guide. The package also comes
with a compiled .HLP file you can give to your users that docu-
ments the query building process. Documentation for our prod-
uct is HTML-based; Conclusion was kind enough to provide us
with the end-user documentation in that format upon request.
47 January 1999 Delphi Informant
The documentation provided is
enough to get you started in a
hurry. Any questions you might
have are answered by inspecting the
sample project. The product also
comes with complete source code.

I wish the query builder could be
embedded in the main application
and not appear as a dialog box, and
a closer replication of the Microsoft
Access query builder tool would
also be nice, because many users
are familiar with its interface.

Nevertheless, TSQLBuilder is a great
tool for end users that need to create
ad hoc SQL queries. It integrates
simply with Delphi applications and
provides nice touches, such as online
documentation for end users. Last, but not least, the price of
US$65 (or US$59 via e-mail) is a bargain. ∆

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or visit
http://www.hyperact.com.

TSQLBuilder 1.62 offers an easy way
to provide ad hoc query capability to
the end users of your Delphi applica-
tion. It integrates easily with Delphi
applications, and provides nice
touches such as end user
documentation. It’s available at a
great price for all versions of Delphi.

Conclusion Software, Pty. Ltd.
P.O. Box 106
Kemps Creek NSW 2171
Sydney, Australia

Voice: +61 2 4774 8703
Fax: +61 2 4774 9086
E-Mail: info@conclusion.com
Web Site:
http://www.conclusion.com
Price: on disk US$65; by e-mail
US$59

http://www.hyperact.com

48 January 1999 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.
CodeSite 1.1
A Revolutionary New Debugging Tool

Debugging is one of the least glamorous aspects of programming. It’s also
one of the most important. Careful as we are, we can never eliminate

the need for debugging, nor can we change its mundane character. However,
we can find ways to make the process more efficient and less time consum-
ing. CodeSite, a revolutionary new debugging tool from Raize Software
Solutions, Inc. takes a giant step in that direction. First we’ll review some of
Delphi’s built-in debugging tools. Then we’ll examine CodeSite’s capabilities.
As developers, we appreciate the many pow-
erful debugging tools built into Delphi, from
the several ways of tracing or stepping
through code, to the new “fly-over” informa-
tion on current variable values introduced in
Delphi 3. These tools and techniques can be
helpful in many situations, but not all. For
example, the integrated debugger can give
you an excellent snapshot of the current state
of your application, but can’t provide any his-
tory of how you got there. And while
Delphi’s debugger is useful for following pro-
gram flow in a normal application, it doesn’t
work for IDE extenders — such as experts —
or for components at design time.

Using a traditional approach, CodeSite takes
care of the dirty work, and allows you to easi-
ly log program information. (The first time I
used CodeSite was when it was in beta and I
was writing the Project Identifier Plug-in for
Eagle Software’s CodeRush. Even after I
crashed Delphi with my plug-in, I was able
to find in what method the access violation
occurred, and why.) Let’s examine that
approach and CodeSite’s interface to it.

A Traditional Technique; a New Tool
Several years ago, when I was working with
Turbo Pascal, I would add Write and Writeln
statements to track interrelated variables as
they changed to see how they affected other
variables and program flow. In a complex
routine or unit, you often have no other
choice. Perhaps you’ve used a similar
approach, such as keeping track of one or
more variables by writing their values to a
label or panel. Or you may have used the
common approach of using ShowMessage to
display a message box containing program
information. This approach has problems:
First, you must convert all your data to a
string representation; second, the dialog box
causes the application’s focus to change. Also,
when the ShowMessage dialog box is closed,
your application will need to repaint itself.

While this kind of technique may be neces-
sary and appropriate, it’s fraught with dan-
gers. As the previous example implies, keep-
ing track of debugging data within the appli-
cation you’re debugging can affect that applica-
tion. It could even introduce problems. If the
program crashes, you could lose valuable
debugging information. The effort to create
your own debugging display is also time con-
suming, especially if you consider the addi-
tional time wasted when you must remove
the debugging statements before shipping the
final version. CodeSite supports this kind of
approach, while at the same time removing
most, or all, of these obstacles.

New & Used
CodeSite consists of two separate, but interrelated, elements:
a CodeSite object (defined in the RzCSIntf unit) that you
add to the uses clause of any unit you wish to debug; and
the CodeSite viewer, which displays the results of the debug-
ging statements. The CodeSite object allows you to send a
wide variety of data (e.g. strings, integers, Boolean variables,
date/time values, etc.) to the viewer. The real power of
CodeSite becomes obvious in the viewer, which we’ll exam-
ine in detail after we discuss the CodeSite object.

CodeSite features many methods for sending messages to the
CodeSite viewer (see Figure 1). They provide a way for send-
ing a wide variety of programming-related data, much more
than simply string data. You can also control whether
CodeSite is enabled, by setting the Enabled property. This is
particularly useful when you want to debug at a certain loca-
tion after a certain number of iterations. It’s analogous to
setting conditional breakpoints. The Enabled property also
allows you to keep CodeSite messages in your code without
a negative impact on performance. When a CodeSite
method is encountered in code, it first checks the state of the
Enabled property before performing its function. If it’s False,
the method exits.

Many of the methods shown in Figure 1 have variations for
formatted strings, e.g. SendFmtNote. Others allow switching
between different message types (csmInfo, csmWarning,
csmError, etc.), e.g. SendIntegerEx. CodeSite also includes
functions to Clear the contents of the viewer, send a message
to the ScratchPad pane, AddCheckPoint in the code, or
AddSeparator in the display. You can easily access these mes-
sages using the CodeSite Message Expert dialog box if you’re
using it with CodeRush (see Figure 2). Even easier are the
keyboard short cuts. These work with the stand-alone and
CodeRush implementations. With the CodeRush implemen-
tation, you save the particular variable to the Clipboard (a
Boolean, such as IsFileSelected) and type the short cut, e.g.
“csb” for CodeSite Boolean. The result is:

CodeSite.Boolean('IsFileSelected', IsFileSelected);

(Note that Delphi’s short cuts work differently from those in
CodeRush and don’t support the kind of Clipboard tech-
nique outlined here.) This, in turn, produces output such as
this in the CodeSite viewer:

IsFileSelected = False

The particular icons used to identify the different types of
messages are useful in finding particular kinds of informa-
tion. There are icons for Information messages (csmInfo),
Warning messages (csmWarning), Error messages
(csmError), etc. Figure 3 shows many of these icons in the
CodeSite viewer.

While CodeSite supports most of the commonly used data
types, it can’t automatically display the symbolic names of
custom enumerated types (although it can show those values
49 January 1999 Delphi Informant
Figure 1: Selected CodeSite methods for sending messages to
the CodeSite viewer.

Method Description

SendMsg Sends a message to the CodeSite viewer.
Each message has an associated type.

SendFmtMsg Like SendMsg, but has the ability to
format the message string.

SendNote Sends a message string (with an icon
showing a yellow note icon) to the
CodeSite viewer.

SendError Sends an Error message string (with an
icon showing a red circle with a white “x”)
to the CodeSite viewer.

SendWarning Sends a Warning message string (with an
icon showing a yellow triangle with a black
exclamation point) to the CodeSite viewer.

SendAssigned Sends a message to the CodeSite viewer
indicting whether the Value parameter is
assigned.

SendBoolean Sends the results of an evaluation of the
Expression parameter as a message to the
CodeSite viewer.

SendColor Sends the color symbol name (if available)
of the Value parameter and the RGB
values for the corresponding color, and
sends the formatted result as a message
to the CodeSite viewer.

SendInteger Sends the formatted Value parameter
(an Integer) as a string message to the
CodeSite viewer.

SendPoint Sends the formatted Value parameter
(a TPoint) as a string as a message to the
CodeSite viewer.

SendRect Sends the formatted Value parameter
(a TRect) as a string message to the
CodeSite viewer.

SendString Sends the formatted Value parameter
(a string) as a string message to the
CodeSite viewer.

SendProperty Sends the current value of a property
(simple or class type) to the CodeSite
viewer as a Property message.

SendObject Sends the current value of an object
(Obj parameter) to the CodeSite viewer
as an Object message with a description
of the published properties and their
current values to the inspector pane.

SendStream Sends a Stream message to the CodeSite
viewer. The first parameter is a message
string used to identify the object; the
second parameter is the actual object,
the details of which are shown in the
inspector pane.

SendStringList Sends a StringList message to the
CodeSite viewer. The first parameter is
the message string; the second is the
string list itself, which is shown in the
inspector pane.

EnterMethod Sends a message to the CodeSite viewer,
which increments the indent level and
adds a message to the message view.

ExitMethod Sends a message to the CodeSite viewer,
which decrements the indent level and
adds a message to the message view.

Figure 2 (Top): One way to add debugging messages to source
code is by using the CodeSite Message Expert.
Figure 3 (Bottom): The three panes of the CodeSite viewer
from the CodeSite Help file: message list, inspector pane, and
scratch pad.

New & Used
as integers). With just a little bit of programming, however,
you can use CodeSite’s methods to display these values in this
way. The enumerated type is defined as:

TCommentStringType = (cstBracket, cstParenStar,

cstDoubleSlash, cstString);

To transform the enumerated type into its string representa-
tion, use the following procedure (courtesy of Ray Konopka):

procedure CSSendCommentString(const Msg: string;
CommentStrType: TCommentStringType);

var
S: string;

begin
S := GetEnumName(TypeInfo(TCommentStringType),

Ord(CommentStrType));

CodeSite.SendFmtMsg('%s = %s', [Msg, S]);

end;

Having defined that procedure, you can now apply the follow-
ing statement to the current status of any variable of this type:

CSSendCommentString('CommentStringType', ACommentStrType);

Because I track this data in a procedure that calls a recursive
function, the debugging output demonstrates both the useful-
ness of the EnterMethod/ExitMethod pair and this custom
statement. Following is a segment in which the recursive
function is called twice. Note the indentation that CodeSite
produces:

Method —>> : CheckedOut

Info : BPos = 22

Info : NewBPos = 23

Info : BPos = 42

Method —>> : CheckedOut

Info : BPos = 42

Info : NewBPos = 43

Info : CommentStringType = cstDoubleSlash

Method <<— : CheckedOut

Info : result = True

Info : CommentStringType = cstDoubleSlash

Method <<— : CheckedOut

The above comes from a log file that I saved to a .TXT file.
In the viewer (which we’ll discuss soon), these lines would
have icons instead of the Method and Info keywords. You
can also save log files in CodeSite’s native format (.CSL for
CodeSite log). This native CodeSite log file is powerful,
allowing you to save the information recorded in the viewer
(a .TXT file contains only the message strings). In addition,
with the CodeSite log file, you can pass CodeSite logs
across platforms and among team members. In all, the
CodeSite object contains 25 methods that provide consider-
able power and control in debugging your applications.

The CodeSite Viewer
The CodeSite viewer has three panes: a message list, an
inspector pane, and a scratch pad (again, see Figure 3). You’ll
50 January 1999 Delphi Informant
recall that there are commands associated with each of these
panes, most of which belong with the message list.
Commands can be executed from the main menu, or from
the context menus shown by right-clicking the mouse on any
of the panes. Most of the commands are also available on the
toolbar. Status information is shown on the status bar.

As you would expect, the message list is the most important.
Any message you send to the CodeSite viewer, except for
scratch pad messages, appears in this pane. You can annotate
items, as well as insert note messages anywhere in the log.
Using the CodeSite Preferences dialog box, you can change
the appearance of the message list and the font used to dis-
play different types of messages, and enable or disable the
message icons that identify the different kinds of messages
(see Figure 4).

CodeSite gives you the option of setting a time stamp for
each message, allowing you to include time-stamp informa-

Figure 4: The CodeSite Preferences dialog box allows you to
modify the appearance of the message list.

New & Used
tion with each line of output. This time-stamp feature rais-
es CodeSite to the level of an incipient profiler. Whether
this potential will be fully realized in future versions is
uncertain, but it’s certainly an exciting prospect. Even in
its current form, it’s very powerful. For example, if you
select two or more items in the message list, the lower-left
status pane shows the time difference between the first and
last items. Also, if you have an enter or exit method mes-
sage selected and press the Find Matching Method toolbar
button while holding down S, both the enter and
exit messages are selected, and the status pane shows how
long that method took to execute.

The inspector pane displays detailed information, depend-
ing on what type of message is selected in the message list.
If a csmObject message is selected, for example, the inspec-
tor pane will show an Object Inspector-like view of all
published properties and their object values. If a csmStream
message is selected, the object’s stream representation is
displayed in a memo field. You can also display the call
stack for the currently selected method in the inspector
pane if that option is enabled.

Finally, the scratch pad is a pane to which you can send
non-persistent messages. You can also write up to 100
lines. Each new message overwrites the current contents of
the line. There are various situations where you might
want to use the scratch pad, such as when tracking changes
in the mouse position.

In addition to the three panes, there are several other very
useful features in the CodeSite viewer: the message navigator
buttons, which allow you to easily move around in a large log
file; text searching in the message list; and the ignore mes-
sages option.

Special Utilities
As if all of this weren’t enough, there are now several
CodeSite utilities that increase this wonderful product’s
51 January 1999 Delphi Informant
power. If you use CodeSite
with CodeRush, the CodeSite
viewer appears in its own
panel. However, there may be
times when you need or want
to use the separate CodeSite
viewer instead. To do this, you
can download the CodeSite
Message Router, a tray icon
program that displays a dialog
box allowing you to redirect
CodeSite messages. If you’re
using CodeSite with
CodeRush, the keyboard tem-
plates are automatically
installed and available. If not,
you’ll want to download
another utility, the
CodeSite.dci file. Because
Delphi 3 supports keyboard
templates — which you can
add through the Code Insight
page of the Environment
Options dialog box — you
can easily add CodeSite tem-
plates to Delphi, with or with-
out CodeRush.

There are two more utilities that will be of interest to some
users. The CodeSite Compatibility Unit consists of a set of
procedures that are identical to the interface procedures used
by GExperts’ debugging window and DebugLog window. For
developers working with database programming, the CodeSite
SQL Monitor Unit turns the CodeSite viewer into a SQL
Monitor; you can view SQL messages as if you were using the
SQL Monitor utility.

Conclusion
CodeSite is a powerful and exciting new Delphi debugging
tool. With it, you can gather all kinds of data that would
otherwise be very hard to obtain. Its keyboard templates
make it very easy to add debugging statements to your
code. And because each debugging statement begins with
“CodeSite,” it’s also easy to remove them. With all of its
features, it’ll certainly become a vital part of many Delphi
developers’ toolkits. I recommend it highly. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet
at acmdoc@aol.com.

CodeSite 1.1 from Raize Software
Solutions, Inc. is a revolutionary debug-
ging tool based on the traditional tech-
nique of sending debugging information
to a window or log file. It consists of a
CodeSite object and a CodeSite viewer.
The former allows the developer to
track a wide variety of program data
and to control the viewer. The viewer
displays debugging information in use-
ful ways, and is highly customizable.

Raize Software Solutions, Inc.
2111 Templar Drive
Naperville, IL 60565

Phone: (630) 717-7217
Fax: (630) 717-7329
E-Mail: sales@raize.com
Web Site: http://www.raize.com
Price: US$79.95

http://www.raize.com

File | New
Directions / Commentary
Delphi 4: The Best Release Ever?

Each new version of Delphi has included enhancements to the Visual Component Library (VCL), and Delphi 4 is no
different (for an in-depth summary, see Robert Vivrette’s article “The Best Just Got Better” in the September, 1998

Delphi Informant). By now, many of you have upgraded to Delphi 4, and you’ve probably reached an initial assessment.
How do the changes in Delphi 4 compare
with those in Delphi 3? The most striking
change in Delphi 3 was its introduction of
packages; Delphi 4’s most significant
changes are to the Integrated Develop-
ment Environment (IDE) and the Object
Pascal language, many of which Dr Cary
Jensen previewed in his article “Delphi 4”
in the July, 1998 Delphi Informant. In
these (and other) accounts based on pre-
release versions, the emphasis was on the
positive and significant changes to this
leading Windows development tool.

There’s another side to the story, however:
a story of bugs and corporate decisions.
First, let’s review some of the major changes
and welcome enhancements.

Major Changes and Enhancements. One
addition that affects both the IDE and the
VCL is the new docking capability. In the
IDE, the ability to dock, or attach, one
window to another is very helpful in cus-
tomizing your working environment. All
the windows and toolbars can be dragged
to various locations on the desktop or
attached to other windows.

Now you can dock the Watch window to
the lower panel along with the Message
window. I’ve been waiting for this feature
for a long time, but you need to be care-
ful: If you drag a package editor window
to improve its visibility (with docking
turned on), it may seem to disappear if it
becomes docked to a window in the back-
ground! Additionally, with the new
DragKind and DockSite properties (and
the existing DragMode property), you can
now add docking behavior to components
in your programs.

Docking support is just one of several
enhancements to the VCL. At the lowest
level, TObject’s new procedures,
BeforeConstruction and AfterConstruction,
give you added control over the behavior
of classes and components. TControl ’s new
property, Constraints, allows you to specify
the minimum and/or maximum width
52 January 1999 Delphi Informant
and height of a control without resorting
to API calls.

Even more significant are the changes to the
Object Pascal language, which are more sub-
stantial than any previous version since Delphi
1. These include the new Int64 data type,
Longword (32-bit unsigned integer), dynamic
arrays, and changes to some existing types.
For C++ veterans, there are welcome addi-
tions, including routine or method overload-
ing (multiple declarations of functions and
procedures), and default parameters.

When you consider the Code Explorer, the
enhancements to the Code Editor (such as
Class Completion), the Code Browser, and
the major debugger enhancements, you’ll like-
ly conclude that Delphi 4 is indeed a major
step forward. But what about the criticisms?

Criticisms. One of the first criticisms after
version 4’s release concerned Inprise’s deci-
sion to not supply some of the printed man-
uals that had accompanied earlier versions. I
disagree with this criticism, because the
Help files accompanying the initial Delphi 4
release were much better than those that
accompanied the first release of Delphi 3,
and the printed manuals are available at a
reasonable price.

Soon after the release, vigilant users began
to discover bugs, the most infamous of
which was the ItemIndex-bug in
TCustomListBox. For a detailed account of
the bug and a fix (if you haven’t downloaded
and installed the maintenance release), see
Mark Miller’s excellent Internet article at
http://www.eagle-software.com/
FixingTheItemIndexBug.htm. This bug was
particularly problematic because it could
potentially affect TCustomListBox’s direct
decedents and decedents of TCustomDBGrid.
In all, seventeen components were affected
(again, see Miller’s article for details).

Here’s a bug you can investigate: Drop two
TPanel components onto a form, setting the
Align property of the first to alRight, and the
Align property of the second to alLeft.
Change the Align property of the second
panel first to alRight, then back to alLeft,
and finally back to alRight. Whoops! Where
did that panel go? Do you notice anything
strange about the left border of the form?
That’s right. The right border of the panel
coincides with the left border of the form —
and you can’t drag the panel back into view
unless you change its Align property again.

And there are others still. How did this sit-
uation come about? The consensus among
many I spoke with at the Inprise Conference
was simply that Delphi 4 was released too
soon. There needed to be more rigorous
testing to ensure that this essential tool —
mission critical for so many developers —
was as bug-free as possible. Even at the cost
of delaying the release for a month while
beta testing continued, ensuring the usabili-
ty of the VCL components would have been
worth it in the long run.

With its enhanced IDE, its new native
Internet components, its productivity tools,
and its expanded Object Pascal language,
Delphi 4 represents a giant step forward; in
my opinion, it’s the best release yet. But
Inprise must consider the results of the
apparently premature release of Delphi 4
(with its VCL bugs) and take steps to avoid
this in the future. Then all of us — Inprise
and the host of Delphi users — can look to
the future with confidence, anticipating
solid, reliable, and impressive Delphi
upgrades each year. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number of
articles in various technical journals. Using
Delphi, he specializes in writing custom com-
ponents and implementing multimedia
capabilities in applications, particularly
sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.

http://www.eagle-software.com/FixingTheItemIndexBug.htm
http://www.eagle-software.com/FixingTheItemIndexBug.htm

	Table of Contents
	Symposium
	Delphi Tools
	Tamarack Announces Rubicon 2.0
	Inner Media Releases Active Delivery 1.2
	MathTools Announces MATCOM 4
	MKO Announces MK QueryBuilder
	Grebar Systems Releases PrintDAT!
	Adapta Ships AdaptAccounts 6.4
	SkyLine Ships ImageLib Corporate Suite 4.0

	Delphi News
	Inprise Announces New Versions of JBuilder/400 and Delphi/400
	AverStar Licenses JWatch Technology to Inprise
	Apogee Builds Award-winning Software Application for Beloit
	Inprise Announces Support for Oracle8i in Enterprise Tools
	Genesis Unlimited Acquires Web Solution Builder

	Crystal Reports Update
	On the Cover
	Controlling the Application Server
	Early Binding
	Controlling the Client
	Controlling What the Client Sees
	Real Transaction Control for Local Tables
	Using TClientDataSet for Flat-file Applications
	Maintained Aggregates
	Conclusion

	On the Cover
	General Rules
	User Interface
	Business Logic
	Data Access
	Data Storage
	The Process
	N-tier, and What Goes Where
	Until Next Month

	Informant Spotlight
	Structure of an MTS System
	The Database
	Server Component Structure
	The AccountsObject
	Acquiring the Data
	Getting Data Back to the Client
	The Object Context in Detail
	The Client
	Conclusion

	DBNavigator
	Basic Navigation
	Reading Data
	Editing Data
	Conclusion

	Algorithms
	Tree Terms
	Planting Trees
	Tree Recursion
	Testing Trees
	Another Sort of Tree
	Climbing Trees
	Conclusion

	Delphi Reports
	Report Parameters
	Sorting and Filtering
	Report Definitions
	Polymorphic Reports
	Invoking the Report
	De-coupling the Reports
	Demonstration
	Conclusion

	At Your Fingertips
	System Error Text Messages
	String-to-Integer Conversion
	Begin Listing One —PlgBltU.pas

	New & Used
	New & Used
	A Traditional Technique; a New Tool
	The CodeSite Viewer
	Special Utilities
	Conclusion

	File I New

